Invariant Random Fields on Spaces with a Group Action

The author describes the current state of the art in the theory of invariant random fields. This theory is based on several different areas of mathematics, including probability theory, differential geometry, harmonic analysis, and special functions. The present volume unifies many results scattered...

Full description

Main Author: Malyarenko, Anatoliy. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edition:1st ed. 2013.
Series:Probability and Its Applications,
Subjects:
Online Access:https://doi.org/10.1007/978-3-642-33406-1
LEADER 03213nam a22005415i 4500
001 978-3-642-33406-1
003 DE-He213
005 20210620144618.0
007 cr nn 008mamaa
008 121026s2013 gw | s |||| 0|eng d
020 |a 9783642334061  |9 978-3-642-33406-1 
024 7 |a 10.1007/978-3-642-33406-1  |2 doi 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Malyarenko, Anatoliy.  |e author.  |0 (orcid)0000-0002-0139-0747  |1 https://orcid.org/0000-0002-0139-0747  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Invariant Random Fields on Spaces with a Group Action  |h [electronic resource] /  |c by Anatoliy Malyarenko. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XVIII, 262 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability and Its Applications,  |x 1431-7028 
505 0 |a 1.Introduction -- 2.Spectral Expansions -- 3.L2 Theory of Invariant Random Fields -- 4.Sample Path Properties of Gaussian Invariant Random Fields -- 5.Applications -- A.Mathematical Background -- References -- Index. 
520 |a The author describes the current state of the art in the theory of invariant random fields. This theory is based on several different areas of mathematics, including probability theory, differential geometry, harmonic analysis, and special functions. The present volume unifies many results scattered throughout the mathematical, physical, and engineering literature, as well as it introduces new results from this area first proved by the author. The book also presents many practical applications, in particular in such highly interesting areas as approximation theory, cosmology and earthquake engineering. It is intended for researchers and specialists working in the fields of stochastic processes, statistics, functional analysis, astronomy, and engineering.           . 
650 0 |a Probabilities. 
650 0 |a Mathematical physics. 
650 0 |a Cosmology. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Mathematical Applications in the Physical Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13120 
650 2 4 |a Cosmology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P22049 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642334078 
776 0 8 |i Printed edition:  |z 9783642444500 
776 0 8 |i Printed edition:  |z 9783642334054 
830 0 |a Probability and Its Applications,  |x 1431-7028 
856 4 0 |u https://doi.org/10.1007/978-3-642-33406-1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)