Guts of Surfaces and the Colored Jones Polynomial

This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of...

Full description

Main Authors: Futer, David. (Author, http://id.loc.gov/vocabulary/relators/aut), Kalfagianni, Efstratia. (http://id.loc.gov/vocabulary/relators/aut), Purcell, Jessica. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edition:1st ed. 2013.
Series:Lecture Notes in Mathematics, 2069
Subjects:
Online Access:https://doi.org/10.1007/978-3-642-33302-6
LEADER 03694nam a22005535i 4500
001 978-3-642-33302-6
003 DE-He213
005 20210702080240.0
007 cr nn 008mamaa
008 121227s2013 gw | s |||| 0|eng d
020 |a 9783642333026  |9 978-3-642-33302-6 
024 7 |a 10.1007/978-3-642-33302-6  |2 doi 
050 4 |a QA613-613.8 
050 4 |a QA613.6-613.66 
072 7 |a PBMS  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBMS  |2 thema 
072 7 |a PBPH  |2 thema 
082 0 4 |a 514.34  |2 23 
100 1 |a Futer, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Guts of Surfaces and the Colored Jones Polynomial  |h [electronic resource] /  |c by David Futer, Efstratia Kalfagianni, Jessica Purcell. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a X, 170 p. 62 illus., 45 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2069 
505 0 |a 1 Introduction -- 2 Decomposition into 3–balls -- 3 Ideal Polyhedra -- 4 I–bundles and essential product disks -- 5 Guts and fibers -- 6 Recognizing essential product disks -- 7 Diagrams without non-prime arcs -- 8 Montesinos links -- 9 Applications -- 10 Discussion and questions. 
520 |a This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the  complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 0 |a Hyperbolic geometry. 
650 1 4 |a Manifolds and Cell Complexes (incl. Diff.Topology).  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M28027 
650 2 4 |a Hyperbolic Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M21030 
700 1 |a Kalfagianni, Efstratia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Purcell, Jessica.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642333033 
776 0 8 |i Printed edition:  |z 9783642333019 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2069 
856 4 0 |u https://doi.org/10.1007/978-3-642-33302-6 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)