Data Provenance and Data Management in eScience

eScience allows scientific research to be carried out in highly distributed environments. The complex nature of the interactions in an eScience infrastructure, which often involves a range of instruments, data, models, applications, people and computational facilities, suggests there is a need for d...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Liu, Qing. (Editor, http://id.loc.gov/vocabulary/relators/edt), Bai, Quan. (Editor, http://id.loc.gov/vocabulary/relators/edt), Giugni, Stephen. (Editor, http://id.loc.gov/vocabulary/relators/edt), Williamson, Darrell. (Editor, http://id.loc.gov/vocabulary/relators/edt), Taylor, John. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edition:1st ed. 2013.
Series:Studies in Computational Intelligence, 426
Subjects:
Online Access:https://doi.org/10.1007/978-3-642-29931-5
LEADER 03970nam a22005415i 4500
001 978-3-642-29931-5
003 DE-He213
005 20210615140339.0
007 cr nn 008mamaa
008 120803s2013 gw | s |||| 0|eng d
020 |a 9783642299315  |9 978-3-642-29931-5 
024 7 |a 10.1007/978-3-642-29931-5  |2 doi 
050 4 |a TA1-2040 
072 7 |a TBC  |2 bicssc 
072 7 |a TEC000000  |2 bisacsh 
072 7 |a TBC  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Data Provenance and Data Management in eScience  |h [electronic resource] /  |c edited by Qing Liu, Quan Bai, Stephen Giugni, Darrell Williamson, John Taylor. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 184 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 426 
505 0 |a Provenance Model for Randomized Controlled Trials -- Evaluating Workflow Trust Using Hidden Markov Modeling and Provenance Data -- Unmanaged Workflows: Their Provenance and Use -- Sketching Distributed Data Provenance -- A Mobile Cloud with Trusted Data Provenance Services for Bioinformatics Research -- Data Provenance and Management in Radio Astronomy: A Stream Computing Approach -- Using Provenance to Support Good Laboratory Practice in Grid Environments. 
520 |a eScience allows scientific research to be carried out in highly distributed environments. The complex nature of the interactions in an eScience infrastructure, which often involves a range of instruments, data, models, applications, people and computational facilities, suggests there is a need for data provenance and data management (DPDM). The W3C Provenance Working Group defines the provenance of a resource as a “record that describes entities and processes involved in producing and delivering or otherwise influencing that resource”. It has been widely recognised that provenance is a critical issue to enable sharing, trust, authentication and reproducibility of eScience process.   Data Provenance and Data Management in eScience identifies the gaps between DPDM foundations and their practice within eScience domains including clinical trials, bioinformatics and radio astronomy. The book covers important aspects of fundamental research in DPDM including provenance representation and querying. It also explores topics that go beyond the fundamentals including applications. This book is a unique reference for DPDM with broad appeal to anyone interested in the practical issues of DPDM in eScience domains. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 1 4 |a Engineering, general.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T00004 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
700 1 |a Liu, Qing.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Bai, Quan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Giugni, Stephen.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Williamson, Darrell.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Taylor, John.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642299322 
776 0 8 |i Printed edition:  |z 9783642441585 
776 0 8 |i Printed edition:  |z 9783642299308 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 426 
856 4 0 |u https://doi.org/10.1007/978-3-642-29931-5 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)