Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty

This book generalizes fuzzy logic systems for different types of uncertainty, including - semantic ambiguity resulting from limited perception or lack of knowledge about exact membership functions - lack of attributes or granularity arising from discretization of real data - imprecise description of...

Full description

Main Author: Starczewski, Janusz T. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edition:1st ed. 2013.
Series:Studies in Fuzziness and Soft Computing, 284
Subjects:
Online Access:https://doi.org/10.1007/978-3-642-29520-1
LEADER 03484nam a22005175i 4500
001 978-3-642-29520-1
003 DE-He213
005 20210617062719.0
007 cr nn 008mamaa
008 120824s2013 gw | s |||| 0|eng d
020 |a 9783642295201  |9 978-3-642-29520-1 
024 7 |a 10.1007/978-3-642-29520-1  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Starczewski, Janusz T.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty  |h [electronic resource] /  |c by Janusz T. Starczewski. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 308 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 284 
505 0 |a Uncertainty in Fuzzy Sets -- Algebraic Operations on Fuzzy Valued Fuzzy Sets -- Defuzzification of Uncertain Fuzzy Sets -- Generalized Uncertain Fuzzy Logic Systems -- Uncertainty Generation in Uncertain Fuzzy Logic Systems -- Designing Uncertain Fuzzy Logic Systems. 
520 |a This book generalizes fuzzy logic systems for different types of uncertainty, including - semantic ambiguity resulting from limited perception or lack of knowledge about exact membership functions - lack of attributes or granularity arising from discretization of real data - imprecise description of membership functions - vagueness perceived as fuzzification of conditional attributes. Consequently, the membership uncertainty can be modeled by combining methods of conventional and type-2 fuzzy logic, rough set theory and possibility theory.            In particular, this book provides a number of formulae for implementing the operation extended on fuzzy-valued fuzzy sets and presents some basic structures of generalized uncertain fuzzy logic systems, as well as introduces several of methods to generate fuzzy membership uncertainty. It is desirable as a reference book for under-graduates in higher education, master and doctor graduates in the courses of computer science, computational intelligence, or fuzzy control and classification, and is especially dedicated to researchers and practitioners in industry.  . 
650 0 |a Computational intelligence. 
650 0 |a Computer simulation. 
650 0 |a Engineering design. 
650 1 4 |a Computational Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11014 
650 2 4 |a Simulation and Modeling.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I19000 
650 2 4 |a Engineering Design.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T17020 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642295218 
776 0 8 |i Printed edition:  |z 9783642448522 
776 0 8 |i Printed edition:  |z 9783642295195 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 284 
856 4 0 |u https://doi.org/10.1007/978-3-642-29520-1 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)