Hierarchical Matrices A Means to Efficiently Solve Elliptic Boundary Value Problems /

Hierarchical matrices are an efficient framework for large-scale fully populated matrices arising, e.g., from the finite element discretization of solution operators of elliptic boundary value problems. In addition to storing such matrices, approximations of the usual matrix operations can be comput...

Full description

Main Author: Bebendorf, Mario. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edition:1st ed. 2008.
Series:Lecture Notes in Computational Science and Engineering, 63
Subjects:
Online Access:https://doi.org/10.1007/978-3-540-77147-0
LEADER 03242nam a22005055i 4500
001 978-3-540-77147-0
003 DE-He213
005 20200705235607.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540771470  |9 978-3-540-77147-0 
024 7 |a 10.1007/978-3-540-77147-0  |2 doi 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Bebendorf, Mario.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hierarchical Matrices  |h [electronic resource] :  |b A Means to Efficiently Solve Elliptic Boundary Value Problems /  |c by Mario Bebendorf. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XVI, 296 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computational Science and Engineering,  |x 1439-7358 ;  |v 63 
505 0 |a Low-Rank Matrices and Matrix Partitioning -- Hierarchical Matrices -- Approximation of Discrete Integral Operators -- Application to Finite Element Discretizations. 
520 |a Hierarchical matrices are an efficient framework for large-scale fully populated matrices arising, e.g., from the finite element discretization of solution operators of elliptic boundary value problems. In addition to storing such matrices, approximations of the usual matrix operations can be computed with logarithmic-linear complexity, which can be exploited to setup approximate preconditioners in an efficient and convenient way. Besides the algorithmic aspects of hierarchical matrices, the main aim of this book is to present their theoretical background. The book contains the existing approximation theory for elliptic problems including partial differential operators with nonsmooth coefficients. Furthermore, it presents in full detail the adaptive cross approximation method for the efficient treatment of integral operators with non-local kernel functions.The theory is supported by many numerical experiments from real applications. 
650 0 |a Computer mathematics. 
650 0 |a Numerical analysis. 
650 0 |a Partial differential equations. 
650 1 4 |a Computational Mathematics and Numerical Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1400X 
650 2 4 |a Numerical Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14050 
650 2 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540869931 
776 0 8 |i Printed edition:  |z 9783540771463 
830 0 |a Lecture Notes in Computational Science and Engineering,  |x 1439-7358 ;  |v 63 
856 4 0 |u https://doi.org/10.1007/978-3-540-77147-0 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)