Machine Learning in Document Analysis and Recognition

The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphicalcomponents of a document and to extract information. With ?rst papers dating back to the 1960’s, DAR is a mature but still gr- ing research?eld with consolidated and known techniques. Optical Character Rec...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Marinai, Simone. (Editor, http://id.loc.gov/vocabulary/relators/edt), Fujisawa, Hiromichi. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edition:1st ed. 2008.
Series:Studies in Computational Intelligence, 90
Subjects:
Online Access:https://doi.org/10.1007/978-3-540-76280-5
LEADER 04594nam a22005295i 4500
001 978-3-540-76280-5
003 DE-He213
005 20210615211845.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540762805  |9 978-3-540-76280-5 
024 7 |a 10.1007/978-3-540-76280-5  |2 doi 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 519  |2 23 
245 1 0 |a Machine Learning in Document Analysis and Recognition  |h [electronic resource] /  |c edited by Simone Marinai, Hiromichi Fujisawa. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XII, 434 p. 142 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 90 
505 0 |a to Document Analysis and Recognition -- Structure Extraction in Printed Documents Using Neural Approaches -- Machine Learning for Reading Order Detection in Document Image Understanding -- Decision-Based Specification and Comparison of Table Recognition Algorithms -- Machine Learning for Digital Document Processing: from Layout Analysis to Metadata Extraction -- Classification and Learning Methods for Character Recognition: Advances and Remaining Problems -- Combining Classifiers with Informational Confidence -- Self-Organizing Maps for Clustering in Document Image Analysis -- Adaptive and Interactive Approaches to Document Analysis -- Cursive Character Segmentation Using Neural Network Techniques -- Multiple Hypotheses Document Analysis -- Learning Matching Score Dependencies for Classifier Combination -- Perturbation Models for Generating Synthetic Training Data in Handwriting Recognition -- Review of Classifier Combination Methods -- Machine Learning for Signature Verification -- Off-line Writer Identification and Verification Using Gaussian Mixture Models. 
520 |a The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphicalcomponents of a document and to extract information. With ?rst papers dating back to the 1960’s, DAR is a mature but still gr- ing research?eld with consolidated and known techniques. Optical Character Recognition (OCR) engines are some of the most widely recognized pr- ucts of the research in this ?eld, while broader DAR techniques are nowadays studied and applied to other industrial and o?ce automation systems. In the machine learning community, one of the most widely known - search problems addressed in DAR is recognition of unconstrained handwr- ten characters which has been frequently used in the past as a benchmark for evaluating machine learning algorithms, especially supervised classi?ers. However, developing a DAR system is a complex engineering task that involves the integration of multiple techniques into an organic framework. A reader may feel that the use of machine learning algorithms is not approp- ate for other DAR tasks than character recognition. On the contrary, such algorithms have been massively used for nearly all the tasks in DAR. With large emphasis being devoted to character recognition and word recognition, other tasks such as pre-processing, layout analysis, character segmentation, and signature veri?cation have also bene?ted much from machine learning algorithms. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Artificial intelligence. 
650 1 4 |a Mathematical and Computational Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11006 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
700 1 |a Marinai, Simone.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Fujisawa, Hiromichi.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540845447 
776 0 8 |i Printed edition:  |z 9783642095115 
776 0 8 |i Printed edition:  |z 9783540762799 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 90 
856 4 0 |u https://doi.org/10.1007/978-3-540-76280-5 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)