Algorithmic Learning Theory 18th International Conference, ALT 2007, Sendai, Japan, October 1-4, 2007, Proceedings /

This volume contains the papers presented at the 18th International Conf- ence on Algorithmic Learning Theory (ALT 2007), which was held in Sendai (Japan) during October 1–4, 2007. The main objective of the conference was to provide an interdisciplinary forum for high-quality talks with a strong the...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Hutter, Marcus. (Editor, http://id.loc.gov/vocabulary/relators/edt), Servedio, Rocco A. (Editor, http://id.loc.gov/vocabulary/relators/edt), Takimoto, Eiji. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edition:1st ed. 2007.
Series:Lecture Notes in Artificial Intelligence ; 4754
Subjects:
Online Access:https://doi.org/10.1007/978-3-540-75225-7
LEADER 05319nam a22005175i 4500
001 978-3-540-75225-7
003 DE-He213
005 20200702055504.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540752257  |9 978-3-540-75225-7 
024 7 |a 10.1007/978-3-540-75225-7  |2 doi 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Algorithmic Learning Theory  |h [electronic resource] :  |b 18th International Conference, ALT 2007, Sendai, Japan, October 1-4, 2007, Proceedings /  |c edited by Marcus Hutter, Rocco A. Servedio, Eiji Takimoto. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a XI, 406 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 4754 
505 0 |a Editors’ Introduction -- Editors’ Introduction -- Invited Papers -- A Theory of Similarity Functions for Learning and Clustering -- Machine Learning in Ecosystem Informatics -- Challenge for Info-plosion -- A Hilbert Space Embedding for Distributions -- Simple Algorithmic Principles of Discovery, Subjective Beauty, Selective Attention, Curiosity and Creativity -- Invited Papers -- Feasible Iteration of Feasible Learning Functionals -- Parallelism Increases Iterative Learning Power -- Prescribed Learning of R.E. Classes -- Learning in Friedberg Numberings -- Complexity Aspects of Learning -- Separating Models of Learning with Faulty Teachers -- Vapnik-Chervonenkis Dimension of Parallel Arithmetic Computations -- Parameterized Learnability of k-Juntas and Related Problems -- On Universal Transfer Learning -- Online Learning -- Tuning Bandit Algorithms in Stochastic Environments -- Following the Perturbed Leader to Gamble at Multi-armed Bandits -- Online Regression Competitive with Changing Predictors -- Unsupervised Learning -- Cluster Identification in Nearest-Neighbor Graphs -- Multiple Pass Streaming Algorithms for Learning Mixtures of Distributions in -- Language Learning -- Learning Efficiency of Very Simple Grammars from Positive Data -- Learning Rational Stochastic Tree Languages -- Query Learning -- One-Shot Learners Using Negative Counterexamples and Nearest Positive Examples -- Polynomial Time Algorithms for Learning k-Reversible Languages and Pattern Languages with Correction Queries -- Learning and Verifying Graphs Using Queries with a Focus on Edge Counting -- Exact Learning of Finite Unions of Graph Patterns from Queries -- Kernel-Based Learning -- Polynomial Summaries of Positive Semidefinite Kernels -- Learning Kernel Perceptrons on Noisy Data Using Random Projections -- Continuity of Performance Metrics for Thin Feature Maps -- Other Directions -- Multiclass Boosting Algorithms for Shrinkage Estimators of Class Probability -- Pseudometrics for State Aggregation in Average Reward Markov Decision Processes -- On Calibration Error of Randomized Forecasting Algorithms. 
520 |a This volume contains the papers presented at the 18th International Conf- ence on Algorithmic Learning Theory (ALT 2007), which was held in Sendai (Japan) during October 1–4, 2007. The main objective of the conference was to provide an interdisciplinary forum for high-quality talks with a strong theore- cal background and scienti?c interchange in areas such as query models, on-line learning, inductive inference, algorithmic forecasting, boosting, support vector machines, kernel methods, complexity and learning, reinforcement learning, - supervised learning and grammatical inference. The conference was co-located with the Tenth International Conference on Discovery Science (DS 2007). This volume includes 25 technical contributions that were selected from 50 submissions by the ProgramCommittee. It also contains descriptions of the ?ve invited talks of ALT and DS; longer versions of the DS papers are available in the proceedings of DS 2007. These invited talks were presented to the audience of both conferences in joint sessions. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I18030 
700 1 |a Hutter, Marcus.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Servedio, Rocco A.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Takimoto, Eiji.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540844297 
776 0 8 |i Printed edition:  |z 9783540752240 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 4754 
856 4 0 |u https://doi.org/10.1007/978-3-540-75225-7 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)