Evolution Algebras and their Applications

Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent dis...

Full description

Main Author: Tian, Jianjun Paul. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edition:1st ed. 2008.
Series:Lecture Notes in Mathematics, 1921
Subjects:
Online Access:https://doi.org/10.1007/978-3-540-74284-5
LEADER 03237nam a22005655i 4500
001 978-3-540-74284-5
003 DE-He213
005 20210702072925.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540742845  |9 978-3-540-74284-5 
024 7 |a 10.1007/978-3-540-74284-5  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Tian, Jianjun Paul.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Evolution Algebras and their Applications  |h [electronic resource] /  |c by Jianjun Paul Tian. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XI, 133 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1921 
505 0 |a Motivations -- Evolution Algebras -- Evolution Algebras and Markov Chains -- Evolution Algebras and Non-Mendelian Genetics -- Further Results and Research Topics. 
520 |a Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics. 
650 0 |a Algebra. 
650 0 |a Nonassociative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Probabilities. 
650 0 |a Biomathematics. 
650 1 4 |a Algebra.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11000 
650 2 4 |a General Algebraic Systems.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1106X 
650 2 4 |a Non-associative Rings and Algebras.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11116 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Mathematical and Computational Biology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M31000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540842422 
776 0 8 |i Printed edition:  |z 9783540742838 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1921 
856 4 0 |u https://doi.org/10.1007/978-3-540-74284-5 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)