Existence and Regularity Properties of the Integrated Density of States of Random Schrödinger Operators

The theory of random Schrödinger operators is devoted to the mathematical analysis of quantum mechanical Hamiltonians modeling disordered solids. Apart from its importance in physics, it is a multifaceted subject in its own right, drawing on ideas and methods from various mathematical disciplines li...

Full description

Main Author: Veselic, Ivan. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edition:1st ed. 2008.
Series:Lecture Notes in Mathematics, 1917
Subjects:
Online Access:https://doi.org/10.1007/978-3-540-72691-3
LEADER 03331nam a22005535i 4500
001 978-3-540-72691-3
003 DE-He213
005 20210702082220.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540726913  |9 978-3-540-72691-3 
024 7 |a 10.1007/978-3-540-72691-3  |2 doi 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Veselic, Ivan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Existence and Regularity Properties of the Integrated Density of States of Random Schrödinger Operators  |h [electronic resource] /  |c by Ivan Veselic. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a X, 147 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1917 
505 0 |a Random Operators -- Existence of the Integrated Density of States -- Wegner Estimate -- Wegner’s Original Idea. Rigorous Implementation -- Lipschitz Continuity of the IDS. 
520 |a The theory of random Schrödinger operators is devoted to the mathematical analysis of quantum mechanical Hamiltonians modeling disordered solids. Apart from its importance in physics, it is a multifaceted subject in its own right, drawing on ideas and methods from various mathematical disciplines like functional analysis, selfadjoint operators, PDE, stochastic processes and multiscale methods. The present text describes in detail a quantity encoding spectral features of random operators: the integrated density of states or spectral distribution function. Various approaches to the construction of the integrated density of states and the proof of its regularity properties are presented. The setting is general enough to apply to random operators on Riemannian manifolds with a discrete group action. References to and a discussion of other properties of the IDS are included, as are a variety of models beyond those treated in detail here. 
650 0 |a Probabilities. 
650 0 |a Partial differential equations. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
650 2 4 |a Dynamical Systems and Ergodic Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540838654 
776 0 8 |i Printed edition:  |z 9783540726890 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1917 
856 4 0 |u https://doi.org/10.1007/978-3-540-72691-3 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)