Markov Models for Pattern Recognition From Theory to Applications /

Markov models are used to solve challenging pattern recognition problems on the basis of sequential data as, e.g., automatic speech or handwriting recognition. This comprehensive introduction to the Markov modeling framework describes both the underlying theoretical concepts of Markov models - cover...

Full description

Main Author: Fink, Gernot A. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edition:1st ed. 2008.
Subjects:
Online Access:https://doi.org/10.1007/978-3-540-71770-6
LEADER 03801nam a22005295i 4500
001 978-3-540-71770-6
003 DE-He213
005 20210615121420.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540717706  |9 978-3-540-71770-6 
024 7 |a 10.1007/978-3-540-71770-6  |2 doi 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
100 1 |a Fink, Gernot A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Markov Models for Pattern Recognition  |h [electronic resource] :  |b From Theory to Applications /  |c by Gernot A. Fink. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XII, 248 p. 51 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Application Areas -- Application Areas -- Theory -- Foundations of Mathematical Statistics -- Vector Quantization -- Hidden Markov Models -- n-Gram Models -- Practice -- Computations with Probabilities -- Configuration of Hidden Markov Models -- Robust Parameter Estimation -- Efficient Model Evaluation -- Model Adaptation -- Integrated Search Methods -- Systems -- Speech Recognition -- Character and Handwriting Recognition -- Analysis of Biological Sequences. 
520 |a Markov models are used to solve challenging pattern recognition problems on the basis of sequential data as, e.g., automatic speech or handwriting recognition. This comprehensive introduction to the Markov modeling framework describes both the underlying theoretical concepts of Markov models - covering Hidden Markov models and Markov chain models - as used for sequential data and presents the techniques necessary to build successful systems for practical applications. This comprehensive introduction to the Markov modeling framework describes the underlying theoretical concepts - covering Hidden Markov models and Markov chain models - and presents the techniques and algorithmic solutions essential to creating real world applications. The actual use of Markov models in their three main application areas - namely speech recognition, handwriting recognition, and biological sequence analysis - is presented with examples of successful systems. Encompassing both Markov model theory and practise, this book addresses the needs of practitioners and researchers from the field of pattern recognition as well as graduate students with a related major field of study. 
650 0 |a Pattern recognition. 
650 0 |a Optical data processing. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Artificial intelligence. 
650 1 4 |a Pattern Recognition.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 
650 2 4 |a Image Processing and Computer Vision.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22021 
650 2 4 |a Natural Language Processing (NLP).  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21040 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642090882 
776 0 8 |i Printed edition:  |z 9783540837077 
776 0 8 |i Printed edition:  |z 9783540717669 
856 4 0 |u https://doi.org/10.1007/978-3-540-71770-6 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)