Advances in Probabilistic Graphical Models

In recent years considerable progress has been made in the area of probabilistic graphical models, in particular Bayesian networks and influence diagrams. Probabilistic graphical models have become mainstream in the area of uncertainty in artificial intelligence; contributions to the area are coming...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Lucas, Peter. (Editor, http://id.loc.gov/vocabulary/relators/edt), Gámez, José A. (Editor, http://id.loc.gov/vocabulary/relators/edt), Salmerón Cerdan, Antonio. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edition:1st ed. 2007.
Series:Studies in Fuzziness and Soft Computing, 213
Subjects:
Online Access:https://doi.org/10.1007/978-3-540-68996-6
LEADER 04939nam a22006255i 4500
001 978-3-540-68996-6
003 DE-He213
005 20210615135810.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540689966  |9 978-3-540-68996-6 
024 7 |a 10.1007/978-3-540-68996-6  |2 doi 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
245 1 0 |a Advances in Probabilistic Graphical Models  |h [electronic resource] /  |c edited by Peter Lucas, José A. Gámez, Antonio Salmerón Cerdan. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a X, 386 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 213 
505 0 |a Foundations -- Markov Equivalence in Bayesian Networks -- A Causal Algebra for Dynamic Flow Networks -- Graphical and Algebraic Representatives of Conditional Independence Models -- Bayesian Network Models with Discrete and Continuous Variables -- Sensitivity Analysis of Probabilistic Networks -- Inference -- A Review on Distinct Methods and Approaches to Perform Triangulation for Bayesian Networks -- Decisiveness in Loopy Propagation -- Lazy Inference in Multiply Sectioned Bayesian Networks Using Linked Junction Forests -- Learning -- A Study on the Evolution of Bayesian Network Graph Structures -- Learning Bayesian Networks with an Approximated MDL Score -- Learning of Latent Class Models by Splitting and Merging Components -- Decision Processes -- An Efficient Exhaustive Anytime Sampling Algorithm for Influence Diagrams -- Multi-currency Influence Diagrams -- Parallel Markov Decision Processes -- Applications -- Applications of HUGIN to Diagnosis and Control of Autonomous Vehicles -- Biomedical Applications of Bayesian Networks -- Learning and Validating Bayesian Network Models of Gene Networks -- The Role of Background Knowledge in Bayesian Classification. 
520 |a In recent years considerable progress has been made in the area of probabilistic graphical models, in particular Bayesian networks and influence diagrams. Probabilistic graphical models have become mainstream in the area of uncertainty in artificial intelligence; contributions to the area are coming from computer science, mathematics, statistics and engineering. This carefully edited book brings together in one volume some of the most important topics of current research in probabilistic graphical modelling, learning from data and probabilistic inference. This includes topics such as the characterisation of conditional independence, the sensitivity of the underlying probability distribution of a Bayesian network to variation in its parameters, the learning of graphical models with latent variables and extensions to the influence diagram formalism. In addition, attention is given to important application fields of probabilistic graphical models, such as the control of vehicles, bioinformatics and medicine. 
650 0 |a Probabilities. 
650 0 |a Discrete mathematics. 
650 0 |a Mathematical models. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Artificial intelligence. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Discrete Mathematics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M29000 
650 2 4 |a Mathematical Modeling and Industrial Mathematics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14068 
650 2 4 |a Mathematical and Computational Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11006 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
700 1 |a Lucas, Peter.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Gámez, José A.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Salmerón Cerdan, Antonio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540834342 
776 0 8 |i Printed edition:  |z 9783642088544 
776 0 8 |i Printed edition:  |z 9783540689942 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 213 
856 4 0 |u https://doi.org/10.1007/978-3-540-68996-6 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)