A Mathematical Introduction to Conformal Field Theory

The first part of this book gives a detailed, self-contained and mathematically rigorous exposition of classical conformal symmetry in n dimensions and its quantization in two dimensions. In particular, the conformal groups are determined and the appearance of the Virasoro algebra in the context of...

Full description

Main Author: Schottenloher, Martin. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edition:2nd ed. 2008.
Series:Lecture Notes in Physics, 759
Subjects:
Online Access:https://doi.org/10.1007/978-3-540-68628-6
LEADER 04278nam a22006015i 4500
001 978-3-540-68628-6
003 DE-He213
005 20200703232619.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540686286  |9 978-3-540-68628-6 
024 7 |a 10.1007/978-3-540-68628-6  |2 doi 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Schottenloher, Martin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Mathematical Introduction to Conformal Field Theory  |h [electronic resource] /  |c by Martin Schottenloher. 
250 |a 2nd ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XV, 249 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 759 
505 0 |a Mathematical Preliminaries -- Conformal Transformations and Conformal Killing Fields -- The Conformal Group -- Central Extensions of Groups -- Central Extensions of Lie Algebras and Bargmann’s Theorem -- The Virasoro Algebra -- First Steps Toward Conformal Field Theory -- Representation Theory of the Virasoro Algebra -- String Theory as a Conformal Field Theory -- Axioms of Relativistic Quantum Field Theory -- Foundations of Two-Dimensional Conformal Quantum Field Theory -- Vertex Algebras -- Mathematical Aspects of the Verlinde Formula -- Appendix A. 
520 |a The first part of this book gives a detailed, self-contained and mathematically rigorous exposition of classical conformal symmetry in n dimensions and its quantization in two dimensions. In particular, the conformal groups are determined and the appearance of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central extensions of Lie algebras and groups. The second part surveys some more advanced topics of conformal field theory, such as the representation theory of the Virasoro algebra, conformal symmetry within string theory, an axiomatic approach to Euclidean conformally covariant quantum field theory and a mathematical interpretation of the Verlinde formula in the context of moduli spaces of holomorphic vector bundles on a Riemann surface. The substantially revised and enlarged second edition makes in particular the second part of the book more self-contained and tutorial, with many more examples given. Furthermore, two new chapters on Wightman's axioms for quantum field theory and vertex algebras broaden the survey of advanced topics. An outlook making the connection with most recent developments has also been added. 
650 0 |a Physics. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 0 |a Algebra. 
650 0 |a String theory. 
650 1 4 |a Mathematical Methods in Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P19013 
650 2 4 |a Global Analysis and Analysis on Manifolds.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12082 
650 2 4 |a Elementary Particles, Quantum Field Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P23029 
650 2 4 |a Algebra.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11000 
650 2 4 |a Quantum Field Theories, String Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P19048 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642088155 
776 0 8 |i Printed edition:  |z 9783540864318 
776 0 8 |i Printed edition:  |z 9783540686255 
830 0 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 759 
856 4 0 |u https://doi.org/10.1007/978-3-540-68628-6 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)