Function Theory in the Unit Ball of Cn

Function Theory in the Unit Ball of Cn. From the reviews: "…The book is easy on the reader. The prerequisites are minimal—just the standard graduate introduction to real analysis, complex analysis (one variable), and functional analysis. This presentation is unhurried and the author does most o...

Full description

Main Author: Rudin, Walter. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edition:1st ed. 2008.
Series:Classics in Mathematics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-540-68276-9
LEADER 03330nam a22004695i 4500
001 978-3-540-68276-9
003 DE-He213
005 20210615145158.0
007 cr nn 008mamaa
008 100715s2008 gw | s |||| 0|eng d
020 |a 9783540682769  |9 978-3-540-68276-9 
024 7 |a 10.1007/978-3-540-68276-9  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Rudin, Walter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Function Theory in the Unit Ball of Cn  |h [electronic resource] /  |c by Walter Rudin. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XIII, 436 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Classics in Mathematics,  |x 1431-0821 
505 0 |a Preliminaries -- The Automorphisms of B -- Integral Representations -- The Invariant Laplacian -- Boundary Behavior of Poisson Integrals -- Boundary Behavior of Cauchy Integrals -- Some Lp-Topics -- Consequences of the Schwarz Lemma -- Measures Related to the Ball Algebra -- Interpolation Sets for the Ball Algebra -- Boundary Behavior of H?-Functions -- Unitarily Invariant Function Spaces -- Moebius-Invariant Function Spaces -- Analytic Varieties -- Proper Holomorphic Maps -- The -Problem -- The Zeros of Nevanlinna Functions -- Tangential Cauchy-Riemann Operators -- Open Problems. 
520 |a Function Theory in the Unit Ball of Cn. From the reviews: "…The book is easy on the reader. The prerequisites are minimal—just the standard graduate introduction to real analysis, complex analysis (one variable), and functional analysis. This presentation is unhurried and the author does most of the work. …certainly a valuable reference book, and (even though there are no exercises) could be used as a text in advanced courses." R. Rochberg in Bulletin of the London Mathematical Society. "…an excellent introduction to one of the most active research fields of complex analysis. …As the author emphasizes, the principal ideas can be presented clearly and explicitly in the ball, specific theorems can be quickly proved. …Mathematics lives in the book: main ideas of theorems and proofs, essential features of the subjects, lines of further developments, problems and conjectures are continually underlined. …Numerous examples throw light on the results as well as on the difficulties." C. Andreian Cazacu in Zentralblatt für Mathematik. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 1 4 |a Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12007 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540858287 
776 0 8 |i Printed edition:  |z 9783540682721 
830 0 |a Classics in Mathematics,  |x 1431-0821 
856 4 0 |u https://doi.org/10.1007/978-3-540-68276-9 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)