Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems Results and Examples /

Once again KAM theory is committed in the context of nearly integrable Hamiltonian systems. While elliptic and hyperbolic tori determine the distribution of maximal invariant tori, they themselves form n-parameter families. Hence, without the need for untypical conditions or external parameters, tor...

Full description

Main Author: Hanßmann, Heinz. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edition:1st ed. 2007.
Series:Lecture Notes in Mathematics, 1893
Subjects:
Online Access:https://doi.org/10.1007/3-540-38894-X
LEADER 03413nam a22005775i 4500
001 978-3-540-38896-8
003 DE-He213
005 20210702081523.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540388968  |9 978-3-540-38896-8 
024 7 |a 10.1007/3-540-38894-X  |2 doi 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBWR  |2 thema 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Hanßmann, Heinz.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems  |h [electronic resource] :  |b Results and Examples /  |c by Heinz Hanßmann. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a XVI, 242 p. 22 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1893 
505 0 |a Bifurcations of Equilibria -- Bifurcations of Periodic Orbits -- Bifurcations of Invariant Tori -- Perturbations of Ramified Torus Bundles -- Planar Singularities -- Stratifications -- Normal Form Theory -- Proof of the Main KAM Theorem -- Proofs of the Necessary Lemmata. 
520 |a Once again KAM theory is committed in the context of nearly integrable Hamiltonian systems. While elliptic and hyperbolic tori determine the distribution of maximal invariant tori, they themselves form n-parameter families. Hence, without the need for untypical conditions or external parameters, torus bifurcations of high co-dimension may be found in a single given Hamiltonian system. The text moves gradually from the integrable case, in which symmetries allow for reduction to bifurcating equilibria, to non-integrability, where smooth parametrisations have to be replaced by Cantor sets. Planar singularities and their versal unfoldings are an important ingredient that helps to explain the underlying dynamics in a transparent way. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Differential equations. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Mathematical physics. 
650 1 4 |a Dynamical Systems and Ergodic Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 
650 2 4 |a Ordinary Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12147 
650 2 4 |a Global Analysis and Analysis on Manifolds.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12082 
650 2 4 |a Theoretical, Mathematical and Computational Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P19005 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540828662 
776 0 8 |i Printed edition:  |z 9783540388944 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1893 
856 4 0 |u https://doi.org/10.1007/3-540-38894-X 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)