Genetic Programming Theory and Practice XIV

These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Chapters in this volume include: S...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Riolo, Rick. (Editor, http://id.loc.gov/vocabulary/relators/edt), Worzel, Bill. (Editor, http://id.loc.gov/vocabulary/relators/edt), Goldman, Brian. (Editor, http://id.loc.gov/vocabulary/relators/edt), Tozier, Bill. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2018.
Edition:1st ed. 2018.
Series:Genetic and Evolutionary Computation,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-97088-2
LEADER 04858nam a22005535i 4500
001 978-3-319-97088-2
003 DE-He213
005 20210624190304.0
007 cr nn 008mamaa
008 181024s2018 gw | s |||| 0|eng d
020 |a 9783319970882  |9 978-3-319-97088-2 
024 7 |a 10.1007/978-3-319-97088-2  |2 doi 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Genetic Programming Theory and Practice XIV  |h [electronic resource] /  |c edited by Rick Riolo, Bill Worzel, Brian Goldman, Bill Tozier. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XV, 227 p. 52 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Genetic and Evolutionary Computation,  |x 1932-0167 
505 0 |a 1 Similarity-based Analysis of Population Dynamics in Genetic Programming Performing Symbolic Regression -- 2 An Investigation of Hybrid Structural and Behavioral Diversity Methods in Genetic Programming -- 3 Investigating Multi-Population Competitive Coevolution for Anticipation of Tax Evasion -- 4 Evolving Artificial General Intelligence for Video Game Controllers -- 5 A Detailed Analysis of a PushGP Run -- 6 Linear Genomes for Structured Programs -- 7 Neutrality, Robustness, and Evolvability in Genetic Programming -- 8 Local Search is Underused in Genetic Programming -- 9 PRETSL: Distributed Probabilistic Rule Evolution for Time-Series Classification -- 10 Discovering Relational Structural in Program Synthesis Problems with Analogical Reasoning -- 11 An Evolutionary Algorithm for Big Data Multi-Class Classification Problems -- 12 A Genetic Framework for Building Dispersion Operators in the Semantic Space -- 13 Assisting Asset Model Development with Evolutionary Augmentation -- 14 Identifying and Harnessing the Building Blocks of Machine Learning Pipelines for Sensible Initialization of a Data Science Automation Tool. 
520 |a These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Chapters in this volume include: Similarity-based Analysis of Population Dynamics in GP Performing Symbolic Regression Hybrid Structural and Behavioral Diversity Methods in GP Multi-Population Competitive Coevolution for Anticipation of Tax Evasion Evolving Artificial General Intelligence for Video Game Controllers A Detailed Analysis of a PushGP Run Linear Genomes for Structured Programs Neutrality, Robustness, and Evolvability in GP Local Search in GP PRETSL: Distributed Probabilistic Rule Evolution for Time-Series Classification Relational Structure in Program Synthesis Problems with Analogical Reasoning An Evolutionary Algorithm for Big Data Multi-Class Classification Problems A Generic Framework for Building Dispersion Operators in the Semantic Space Assisting Asset Model Development with Evolutionary Augmentation Building Blocks of Machine Learning Pipelines for Initialization of a Data Science Automation Tool Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 0 |a Algorithms. 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Computational Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11014 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I16021 
700 1 |a Riolo, Rick.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Worzel, Bill.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Goldman, Brian.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Tozier, Bill.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319970875 
776 0 8 |i Printed edition:  |z 9783319970899 
776 0 8 |i Printed edition:  |z 9783030073008 
830 0 |a Genetic and Evolutionary Computation,  |x 1932-0167 
856 4 0 |u https://doi.org/10.1007/978-3-319-97088-2 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)