Coding Ockham's Razor

This book explores inductive inference using the minimum message length (MML) principle, a Bayesian method which is a realisation of Ockham's Razor based on information theory. Accompanied by a library of software, the book can assist an applications programmer, student or researcher in the fie...

Full description

Main Author: Allison, Lloyd. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2018.
Edition:1st ed. 2018.
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-76433-7
LEADER 03663nam a22004935i 4500
001 978-3-319-76433-7
003 DE-He213
005 20210619233530.0
007 cr nn 008mamaa
008 180504s2018 gw | s |||| 0|eng d
020 |a 9783319764337  |9 978-3-319-76433-7 
024 7 |a 10.1007/978-3-319-76433-7  |2 doi 
050 4 |a QA76.9.D35 
072 7 |a UMB  |2 bicssc 
072 7 |a COM062000  |2 bisacsh 
072 7 |a UMB  |2 thema 
082 0 4 |a 005.73  |2 23 
100 1 |a Allison, Lloyd.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Coding Ockham's Razor  |h [electronic resource] /  |c by Lloyd Allison. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIV, 175 p. 46 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Introduction -- 2 Discrete -- 3 Integers -- 4 Continuous -- 5 Function-Models -- 6 Multivariate -- 7 Mixture Models -- 8 Function-Models 2 -- 9 Vectors -- 10 Linear Regression -- 11 Graphs -- 12 Bits and Pieces -- 13 An Implementation -- 14 Glossary. 
520 |a This book explores inductive inference using the minimum message length (MML) principle, a Bayesian method which is a realisation of Ockham's Razor based on information theory. Accompanied by a library of software, the book can assist an applications programmer, student or researcher in the fields of data analysis and machine learning to write computer programs based upon this principle. MML inference has been around for 50 years and yet only one highly technical book has been written about the subject. The majority of research in the field has been backed by specialised one-off programs but this book includes a library of general MML–based software, in Java. The Java source code is available under the GNU GPL open-source license. The software library is documented using Javadoc which produces extensive cross referenced HTML manual pages. Every probability distribution and statistical model that is described in the book is implemented and documented in the software library. The library may contain a component that directly solves a reader's inference problem, or contain components that can be put together to solve the problem, or provide a standard interface under which a new component can be written to solve the problem. This book will be of interest to application developers in the fields of machine learning and statistics as well as academics, postdocs, programmers and data scientists. It could also be used by third year or fourth year undergraduate or postgraduate students. 
650 0 |a Data structures (Computer science). 
650 0 |a Statistics . 
650 0 |a Artificial intelligence. 
650 1 4 |a Data Structures.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I15017 
650 2 4 |a Statistics and Computing/Statistics Programs.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S12008 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319764320 
776 0 8 |i Printed edition:  |z 9783319764344 
776 0 8 |i Printed edition:  |z 9783030094881 
856 4 0 |u https://doi.org/10.1007/978-3-319-76433-7 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)