Introduction to Deep Learning From Logical Calculus to Artificial Intelligence /

This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the m...

Full description

Main Author: Skansi, Sandro. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2018.
Edition:1st ed. 2018.
Series:Undergraduate Topics in Computer Science,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-73004-2
LEADER 04453nam a22005535i 4500
001 978-3-319-73004-2
003 DE-He213
005 20210621212834.0
007 cr nn 008mamaa
008 180205s2018 gw | s |||| 0|eng d
020 |a 9783319730042  |9 978-3-319-73004-2 
024 7 |a 10.1007/978-3-319-73004-2  |2 doi 
050 4 |a Q325.5-.7 
050 4 |a TK7882.P3 
072 7 |a UYQM  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQM  |2 thema 
082 0 4 |a 006.31  |2 23 
100 1 |a Skansi, Sandro.  |e author.  |0 (orcid)0000-0002-3851-1186  |1 https://orcid.org/0000-0002-3851-1186  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Deep Learning  |h [electronic resource] :  |b From Logical Calculus to Artificial Intelligence /  |c by Sandro Skansi. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIII, 191 p. 38 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Topics in Computer Science,  |x 1863-7310 
505 0 |a From Logic to Cognitive Science -- Mathematical and Computational Prerequisites -- Machine Learning Basics -- Feed-forward Neural Networks -- Modifications and Extensions to a Feed-forward Neural Network -- Convolutional Neural Networks -- Recurrent Neural Networks -- Autoencoders -- Neural Language Models -- An Overview of Different Neural Network Architectures -- Conclusion. 
520 |a This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website. Topics and features: Introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning Discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network Examines convolutional neural networks, and the recurrent connections to a feed-forward neural network Describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning Presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology. Dr. Sandro Skansi is an Assistant Professor of Logic at the University of Zagreb and Lecturer in Data Science at University College Algebra, Zagreb, Croatia. 
650 0 |a Machine learning. 
650 0 |a Pattern recognition. 
650 0 |a Neural networks (Computer science) . 
650 0 |a Coding theory. 
650 0 |a Information theory. 
650 1 4 |a Machine Learning.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21010 
650 2 4 |a Pattern Recognition.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 
650 2 4 |a Mathematical Models of Cognitive Processes and Neural Networks.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13100 
650 2 4 |a Coding and Information Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I15041 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319730035 
776 0 8 |i Printed edition:  |z 9783319730059 
830 0 |a Undergraduate Topics in Computer Science,  |x 1863-7310 
856 4 0 |u https://doi.org/10.1007/978-3-319-73004-2 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)