Algorithms and Programs of Dynamic Mixture Estimation Unified Approach to Different Types of Components /

This book provides a general theoretical background for constructing the recursive Bayesian estimation algorithms for mixture models. It collects the recursive algorithms for estimating dynamic mixtures of various distributions and brings them in the unified form, providing a scheme for constructing...

Full description

Main Authors: Nagy, Ivan. (Author, http://id.loc.gov/vocabulary/relators/aut), Suzdaleva, Evgenia. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Edition:1st ed. 2017.
Series:SpringerBriefs in Statistics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-64671-8
LEADER 03633nam a22005895i 4500
001 978-3-319-64671-8
003 DE-He213
005 20210619083159.0
007 cr nn 008mamaa
008 170816s2017 gw | s |||| 0|eng d
020 |a 9783319646718  |9 978-3-319-64671-8 
024 7 |a 10.1007/978-3-319-64671-8  |2 doi 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Nagy, Ivan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Algorithms and Programs of Dynamic Mixture Estimation  |h [electronic resource] :  |b Unified Approach to Different Types of Components /  |c by Ivan Nagy, Evgenia Suzdaleva. 
250 |a 1st ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XI, 113 p. 27 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Statistics,  |x 2191-544X 
505 0 |a Introduction -- Basic Models -- Statistical Analysis of Dynamic Mixtures -- Dynamic Mixture Estimation -- Program Codes -- Experiments -- Appendices. 
520 |a This book provides a general theoretical background for constructing the recursive Bayesian estimation algorithms for mixture models. It collects the recursive algorithms for estimating dynamic mixtures of various distributions and brings them in the unified form, providing a scheme for constructing the estimation algorithm for a mixture of components modeled by distributions with reproducible statistics. It offers the recursive estimation of dynamic mixtures, which are free of iterative processes and close to analytical solutions as much as possible. In addition, these methods can be used online and simultaneously perform learning, which improves their efficiency during estimation. The book includes detailed program codes for solving the presented theoretical tasks. Codes are implemented in the open source platform for engineering computations. The program codes given serve to illustrate the theory and demonstrate the work of the included algorithms. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 0 |a System theory. 
650 0 |a Computer simulation. 
650 0 |a Algorithms. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Statistical Theory and Methods.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S11001 
650 2 4 |a Systems Theory, Control.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13070 
650 2 4 |a Simulation and Modeling.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I19000 
650 2 4 |a Algorithms.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14018 
700 1 |a Suzdaleva, Evgenia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319646701 
776 0 8 |i Printed edition:  |z 9783319646725 
830 0 |a SpringerBriefs in Statistics,  |x 2191-544X 
856 4 0 |u https://doi.org/10.1007/978-3-319-64671-8 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)