Computational Physics Simulation of Classical and Quantum Systems /

This textbook presents basic numerical methods and applies them to a large variety of physical models in multiple computer experiments. Classical algorithms and more recent methods are explained. Partial differential equations are treated generally comparing important methods, and equations of motio...

Full description

Main Author: Scherer, Philipp O.J. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Edition:3rd ed. 2017.
Series:Graduate Texts in Physics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-61088-7
LEADER 04867nam a22005535i 4500
001 978-3-319-61088-7
003 DE-He213
005 20210620043405.0
007 cr nn 008mamaa
008 170908s2017 gw | s |||| 0|eng d
020 |a 9783319610887  |9 978-3-319-61088-7 
024 7 |a 10.1007/978-3-319-61088-7  |2 doi 
050 4 |a QC1-999 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.1  |2 23 
100 1 |a Scherer, Philipp O.J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Computational Physics  |h [electronic resource] :  |b Simulation of Classical and Quantum Systems /  |c by Philipp O.J. Scherer. 
250 |a 3rd ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XXIV, 633 p. 306 illus., 50 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Physics,  |x 1868-4513 
505 0 |a I. Numerical Methods -- Error Analysis -- Interpolation -- Numerical Differentiation -- Numerical Integration -- Systems of Inhomogeneous Linear Equations -- Roots and Extremal Points -- Fourier Transformation -- Wavelets -- Random Numbers and Monte Carlo Methods -- Eigenvalue Problems -- Data Fitting -- Discretization of Differential Equations -- Equations of Motion -- II. Simulation of Classical and Quantum Systems -- Rotational Motion -- Molecular Mechanics -- Continuum Mechanics -- Thermodynamic Systems -- Random Walk and Brownian Motion -- Electrostatics -- Waves -- Diffusion -- Convection -- Nonlinear Systems -- Simple Quantum Systems -- Quantum Many -Body Systems. 
520 |a This textbook presents basic numerical methods and applies them to a large variety of physical models in multiple computer experiments. Classical algorithms and more recent methods are explained. Partial differential equations are treated generally comparing important methods, and equations of motion are solved by a large number of simple as well as more sophisticated methods. Several modern algorithms for quantum wavepacket motion are compared. The first part of the book discusses the basic numerical methods, while the second part simulates classical and quantum systems. Simple but non-trivial examples from a broad range of physical topics offer readers insights into the numerical treatment but also the simulated problems. Rotational motion is studied in detail, as are simple quantum systems. A two-level system in an external field demonstrates elementary principles from quantum optics and simulation of a quantum bit. Principles of molecular dynamics are shown. Modern bounda ry element methods are presented in addition to standard methods, and waves and diffusion processes are simulated comparing the stability and efficiency of different methods. A large number of computer experiments is provided, which can be tried out even by readers with no programming skills. Exercises in the applets complete the pedagogical treatment in the book. In the third edition Monte Carlo methods and random number generation have been updated taking recent developments into account. Krylov-space methods for eigenvalue problems are discussed in much more detail. The wavelet transformation method has been included as well as simple applications to continuum mechanics and convection-diffusion problems. Lastly, elementary quantum many-body problems demonstrate the application of variational and Monte-Carlo methods. . 
650 0 |a Physics. 
650 0 |a Mathematical physics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Chemistry, Physical and theoretical. 
650 1 4 |a Numerical and Computational Physics, Simulation.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P19021 
650 2 4 |a Mathematical Applications in the Physical Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13120 
650 2 4 |a Mathematical and Computational Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11006 
650 2 4 |a Theoretical and Computational Chemistry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/C25007 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319610870 
776 0 8 |i Printed edition:  |z 9783319610894 
776 0 8 |i Printed edition:  |z 9783319870021 
830 0 |a Graduate Texts in Physics,  |x 1868-4513 
856 4 0 |u https://doi.org/10.1007/978-3-319-61088-7 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)