Goldbach’s Problem Selected Topics /

Important results surrounding the proof of Goldbach's ternary conjecture are presented in this book. Beginning with an historical perspective along with an overview of essential lemmas and theorems, this monograph moves on to a detailed proof of Vinogradov's theorem. The principles of the...

Full description

Main Author: Rassias, Michael Th. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Edition:1st ed. 2017.
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-57914-6
LEADER 03331nam a22004935i 4500
001 978-3-319-57914-6
003 DE-He213
005 20210617053247.0
007 cr nn 008mamaa
008 170627s2017 gw | s |||| 0|eng d
020 |a 9783319579146  |9 978-3-319-57914-6 
024 7 |a 10.1007/978-3-319-57914-6  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Rassias, Michael Th.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Goldbach’s Problem  |h [electronic resource] :  |b Selected Topics /  |c by Michael Th. Rassias. 
250 |a 1st ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XV, 122 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Foreword -- 1. Introduction -- 2. Step by step proof of Vinogradov's theorem -- The ternary Goldbach problem with a prime and two isolated primes -- 4. Basic steps of the proof of Schnirelmann's theorem. - Appendix. - Index. -Bibliography. 
520 |a Important results surrounding the proof of Goldbach's ternary conjecture are presented in this book. Beginning with an historical perspective along with an overview of essential lemmas and theorems, this monograph moves on to a detailed proof of Vinogradov's theorem. The principles of the Hardy-Littlewood circle method are outlined and applied to Goldbach's ternary conjecture. New results due to H. Maier and the author on Vinogradov's theorem are proved under the assumption of the Riemann hypothesis. The final chapter discusses an approach to Goldbach's conjecture through theorems by L. G. Schnirelmann. This book concludes with an Appendix featuring a sketch of H. Helfgott's proof of Goldbach's ternary conjecture. The Appendix also presents some biographical remarks of mathematicians whose research has played a seminal role on the Goldbach ternary problem. The author's step-by-step approach makes this book accessible to those that have mastered classical number theory and fundamental notions of mathematical analysis. This book will be particularly useful to graduate students and mathematicians in analytic number theory, approximation theory as well as to researchers working on Goldbach's problem. 
650 0 |a Number theory. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Numerical analysis. 
650 1 4 |a Number Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M25001 
650 2 4 |a Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12007 
650 2 4 |a Numerical Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14050 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319579122 
776 0 8 |i Printed edition:  |z 9783319579139 
856 4 0 |u https://doi.org/10.1007/978-3-319-57914-6 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)