Data Privacy: Foundations, New Developments and the Big Data Challenge

This book offers a broad, cohesive overview of the field of data privacy. It discusses, from a technological perspective, the problems and solutions of the three main communities working on data privacy: statistical disclosure control (those with a statistical background), privacy-preserving data mi...

Full description

Main Author: Torra, Vicenç. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Edition:1st ed. 2017.
Series:Studies in Big Data, 28
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-57358-8
LEADER 02902nam a22004935i 4500
001 978-3-319-57358-8
003 DE-He213
005 20210619004649.0
007 cr nn 008mamaa
008 170517s2017 gw | s |||| 0|eng d
020 |a 9783319573588  |9 978-3-319-57358-8 
024 7 |a 10.1007/978-3-319-57358-8  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Torra, Vicenç.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data Privacy: Foundations, New Developments and the Big Data Challenge  |h [electronic resource] /  |c by Vicenç Torra. 
250 |a 1st ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XIV, 269 p. 22 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 28 
505 0 |a Introduction -- Machine and Statistical Learning -- On the Classification of Protection Procedures -- User’s privacy -- Privacy Models and Disclosure Risk Measures -- Masking methods -- Information loss: evaluation and measures -- Selection of masking methods -- Conclusions. 
520 |a This book offers a broad, cohesive overview of the field of data privacy. It discusses, from a technological perspective, the problems and solutions of the three main communities working on data privacy: statistical disclosure control (those with a statistical background), privacy-preserving data mining (those working with data bases and data mining), and privacy-enhancing technologies (those involved in communications and security) communities. Presenting different approaches, the book describes alternative privacy models and disclosure risk measures as well as data protection procedures for respondent, holder and user privacy. It also discusses specific data privacy problems and solutions for readers who need to deal with big data. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319573564 
776 0 8 |i Printed edition:  |z 9783319573571 
776 0 8 |i Printed edition:  |z 9783319861418 
830 0 |a Studies in Big Data,  |x 2197-6503 ;  |v 28 
856 4 0 |u https://doi.org/10.1007/978-3-319-57358-8 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)