Gesture Recognition

This book presents a selection of chapters, written by leading international researchers, related to the automatic analysis of gestures from still images and multi-modal RGB-Depth image sequences. It offers a comprehensive review of vision-based approaches for supervised gesture recognition methods...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Escalera, Sergio. (Editor, http://id.loc.gov/vocabulary/relators/edt), Guyon, Isabelle. (Editor, http://id.loc.gov/vocabulary/relators/edt), Athitsos, Vassilis. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Edition:1st ed. 2017.
Series:The Springer Series on Challenges in Machine Learning,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-57021-1
LEADER 02960nam a22005415i 4500
001 978-3-319-57021-1
003 DE-He213
005 20210619141451.0
007 cr nn 008mamaa
008 170719s2017 gw | s |||| 0|eng d
020 |a 9783319570211  |9 978-3-319-57021-1 
024 7 |a 10.1007/978-3-319-57021-1  |2 doi 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Gesture Recognition  |h [electronic resource] /  |c edited by Sergio Escalera, Isabelle Guyon, Vassilis Athitsos. 
250 |a 1st ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XII, 578 p. 214 illus., 170 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The Springer Series on Challenges in Machine Learning,  |x 2520-131X 
505 0 |a Preface -- Chapter 1 -- Chapter 2 -- Chapter 3 -- Chapter 4 -- Chapter 5. 
520 |a This book presents a selection of chapters, written by leading international researchers, related to the automatic analysis of gestures from still images and multi-modal RGB-Depth image sequences. It offers a comprehensive review of vision-based approaches for supervised gesture recognition methods that have been validated by various challenges. Several aspects of gesture recognition are reviewed, including data acquisition from different sources, feature extraction, learning, and recognition of gestures. 
650 0 |a Artificial intelligence. 
650 0 |a Optical data processing. 
650 0 |a Pattern recognition. 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Image Processing and Computer Vision.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22021 
650 2 4 |a Pattern Recognition.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 
700 1 |a Escalera, Sergio.  |e editor.  |0 (orcid)0000-0003-0617-8873  |1 https://orcid.org/0000-0003-0617-8873  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Guyon, Isabelle.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Athitsos, Vassilis.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319570204 
776 0 8 |i Printed edition:  |z 9783319570228 
776 0 8 |i Printed edition:  |z 9783319860596 
830 0 |a The Springer Series on Challenges in Machine Learning,  |x 2520-131X 
856 4 0 |u https://doi.org/10.1007/978-3-319-57021-1 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)