Mathematical Methods of Classical Physics

This short primer, geared towards students with a strong interest in mathematically rigorous approaches, introduces the essentials of classical physics, briefly points out its place in the history of physics and its relation to modern physics, and explains what benefits can be gained from a mathemat...

Full description

Main Authors: Cortés, Vicente. (Author, http://id.loc.gov/vocabulary/relators/aut), Haupt, Alexander S. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Edition:1st ed. 2017.
Series:SpringerBriefs in Physics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-56463-0
LEADER 02955nam a22005295i 4500
001 978-3-319-56463-0
003 DE-He213
005 20210625073723.0
007 cr nn 008mamaa
008 170426s2017 gw | s |||| 0|eng d
020 |a 9783319564630  |9 978-3-319-56463-0 
024 7 |a 10.1007/978-3-319-56463-0  |2 doi 
050 4 |a QC120-168.85 
050 4 |a QA808.2 
072 7 |a PHD  |2 bicssc 
072 7 |a SCI041000  |2 bisacsh 
072 7 |a PHD  |2 thema 
082 0 4 |a 531  |2 23 
100 1 |a Cortés, Vicente.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical Methods of Classical Physics  |h [electronic resource] /  |c by Vicente Cortés, Alexander S. Haupt. 
250 |a 1st ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XI, 99 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Physics,  |x 2191-5423 
505 0 |a Introduction -- Lagrangian mechanics -- Hamiltonian mechanics -- Hamilton-Jacobi theory -- Classical field theory -- Exercises -- References -- Index. 
520 |a This short primer, geared towards students with a strong interest in mathematically rigorous approaches, introduces the essentials of classical physics, briefly points out its place in the history of physics and its relation to modern physics, and explains what benefits can be gained from a mathematical perspective. As a starting point, Newtonian mechanics is introduced and its limitations are discussed. This leads to and motivates the study of different formulations of classical mechanics, such as Lagrangian and Hamiltonian mechanics, which are the subjects of later chapters. In the second part, a chapter on classical field theories introduces more advanced material. Numerous exercises are collected in the appendix. 
650 0 |a Mechanics. 
650 0 |a Physics. 
650 0 |a Mathematical physics. 
650 1 4 |a Classical Mechanics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P21018 
650 2 4 |a Mathematical Methods in Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P19013 
650 2 4 |a Mathematical Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M35000 
700 1 |a Haupt, Alexander S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319564623 
776 0 8 |i Printed edition:  |z 9783319564647 
830 0 |a SpringerBriefs in Physics,  |x 2191-5423 
856 4 0 |u https://doi.org/10.1007/978-3-319-56463-0 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)