Cellular Automata: Analysis and Applications

This book focuses on a coherent representation of the main approaches to analyze the dynamics of cellular automata. Cellular automata are an inevitable tool in mathematical modeling. In contrast to classical modeling approaches as partial differential equations, cellular automata are straightforward...

Full description

Main Authors: Hadeler, Karl-Peter. (Author, http://id.loc.gov/vocabulary/relators/aut), Müller, Johannes. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Edition:1st ed. 2017.
Series:Springer Monographs in Mathematics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-53043-7
LEADER 05219nam a22005775i 4500
001 978-3-319-53043-7
003 DE-He213
005 20210619055748.0
007 cr nn 008mamaa
008 170527s2017 gw | s |||| 0|eng d
020 |a 9783319530437  |9 978-3-319-53043-7 
024 7 |a 10.1007/978-3-319-53043-7  |2 doi 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBWR  |2 thema 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Hadeler, Karl-Peter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Cellular Automata: Analysis and Applications  |h [electronic resource] /  |c by Karl-Peter Hadeler, Johannes Müller. 
250 |a 1st ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XI, 467 p. 78 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a 1.Introduction -- 2.Cellular automata - basic definitions -- 3.Cantor topology of cellular automata -- 4.Besicovitch and Weyl topologies -- 5 Attractors -- 6 Chaos and Lyapunov stability -- 7 Language classification of Kůrka -- 8.Turing machines, tiles, and computability -- 9 Surjectivity and injectivity of global maps -- 10.Linear Cellular Automata -- 11 Particle motion -- 12 -- Pattern formation -- 13.Applications in various areas -- A.Basic mathematical tools. 
520 |a This book focuses on a coherent representation of the main approaches to analyze the dynamics of cellular automata. Cellular automata are an inevitable tool in mathematical modeling. In contrast to classical modeling approaches as partial differential equations, cellular automata are straightforward to simulate but hard to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction of cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of different topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kůrka classification). These classifications suggest to cluster cellular automata, similar to the classification of partial differential equations in hyperbolic, parabolic and elliptic equations. This part of the book culminates in the question, whether properties of cellular automata are decidable. Surjectivity, and injectivity are examined, and the seminal Garden of Eden theorems are discussed. The third part focuses on the analysis of cellular automata that inherit distinct properties, often based on mathematical modeling of biological, physical or chemical systems. Linearity is a concept that allows to define self-similar limit sets. Models for particle motion show how to bridge the gap between cellular automata and partial differential equations (HPP model and ultradiscrete limit). Pattern formation is related to linear cellular automata, to the Bar-Yam model for Turing pattern, and Greenberg-Hastings automata for excitable media. Also models for sandpiles, the dynamics of infectious diseases and evolution of predator-prey systems are discussed. Mathematicians find an overview about theory and tools for the analysis of cellular automata. The book contains an appendix introducing basic mathematical techniques and notations, such that also physicists, chemists and biologists interested in cellular automata beyond pure simulations will benefit. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a System theory. 
650 0 |a Mathematical physics. 
650 0 |a Biomathematics. 
650 1 4 |a Dynamical Systems and Ergodic Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 
650 2 4 |a Complex Systems.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13090 
650 2 4 |a Mathematical Applications in the Physical Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13120 
650 2 4 |a Mathematical and Computational Biology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M31000 
700 1 |a Müller, Johannes.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319530420 
776 0 8 |i Printed edition:  |z 9783319530444 
776 0 8 |i Printed edition:  |z 9783319850474 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u https://doi.org/10.1007/978-3-319-53043-7 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)