Guide to 3D Vision Computation Geometric Analysis and Implementation /

This classroom-tested and easy-to-understand textbook/reference describes the state of the art in 3D reconstruction from multiple images, taking into consideration all aspects of programming and implementation. Unlike other textbooks on computer vision, this Guide to 3D Vision Computation takes a un...

Full description

Main Authors: Kanatani, Kenichi. (Author, http://id.loc.gov/vocabulary/relators/aut), Sugaya, Yasuyuki. (http://id.loc.gov/vocabulary/relators/aut), Kanazawa, Yasushi. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edition:1st ed. 2016.
Series:Advances in Computer Vision and Pattern Recognition,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-48493-8
LEADER 04572nam a22005175i 4500
001 978-3-319-48493-8
003 DE-He213
005 20210620083654.0
007 cr nn 008mamaa
008 161209s2016 gw | s |||| 0|eng d
020 |a 9783319484938  |9 978-3-319-48493-8 
024 7 |a 10.1007/978-3-319-48493-8  |2 doi 
050 4 |a TA1630-1650 
072 7 |a UYT  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYT  |2 thema 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
100 1 |a Kanatani, Kenichi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Guide to 3D Vision Computation  |h [electronic resource] :  |b Geometric Analysis and Implementation /  |c by Kenichi Kanatani, Yasuyuki Sugaya, Yasushi Kanazawa. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XI, 321 p. 54 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
505 0 |a Introduction -- Part I: Fundamental Algorithms for Computer Vision -- Ellipse Fitting -- Fundamental Matrix Computation -- Triangulation -- 3D Reconstruction from Two Views -- Homography Computation -- Planar Triangulation -- 3D Reconstruction of a Plane -- Ellipse Analysis and 3D Computation of Circles -- Part II: Multiview 3D Reconstruction -- Multiview Triangulation -- Bundle Adjustment -- Self-calibration of Affine Cameras -- Self-calibration of Perspective Cameras -- Part III: Mathematical Foundation of Geometric Estimation -- Accuracy of Geometric Estimation -- Maximum Likelihood and Geometric Estimation -- Theoretical Accuracy Limit -- Solutions. 
520 |a This classroom-tested and easy-to-understand textbook/reference describes the state of the art in 3D reconstruction from multiple images, taking into consideration all aspects of programming and implementation. Unlike other textbooks on computer vision, this Guide to 3D Vision Computation takes a unique approach in which the initial focus is on practical application and the procedures necessary to actually build a computer vision system. The theoretical background is then briefly explained afterwards, highlighting how one can quickly and simply obtain the desired result without knowing the derivation of the mathematical detail. Topics and features: Reviews the fundamental algorithms underlying computer vision, and their implementation Describes the latest techniques for 3D reconstruction from multiple images Summarizes the mathematical theory behind statistical error analysis for general geometric estimation problems Offers examples of experimental results, enabling the reader to get a feeling of what can be done using each procedure Presents derivations and justifications as problems at the end of each chapter, with solutions supplied at the end of the book Explains the historical background for each topic in the supplemental notes at the end of each chapter Provides additional material at an associated website, include sample code for typical procedures to help readers implement the algorithms described in the book This accessible work will be of great value to students on introductory computer vision courses. Serving as both as a practical programming guidebook and a useful reference on mathematics for computer vision, it is suitable for practitioners seeking to implement computer vision algorithms as well as for theoreticians wishing to know the underlying mathematical detail. 
650 0 |a Optical data processing. 
650 1 4 |a Image Processing and Computer Vision.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22021 
700 1 |a Sugaya, Yasuyuki.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Kanazawa, Yasushi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319484921 
776 0 8 |i Printed edition:  |z 9783319484945 
776 0 8 |i Printed edition:  |z 9783319839554 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
856 4 0 |u https://doi.org/10.1007/978-3-319-48493-8 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)