Fuzzy Sets, Rough Sets, Multisets and Clustering

This book is dedicated to Prof. Sadaaki Miyamoto and presents cutting-edge papers in some of the areas in which he contributed. Bringing together contributions by leading researchers in the field, it concretely addresses clustering, multisets, rough sets and fuzzy sets, as well as their applications...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Torra, Vicenç. (Editor, http://id.loc.gov/vocabulary/relators/edt), Dahlbom, Anders. (Editor, http://id.loc.gov/vocabulary/relators/edt), Narukawa, Yasuo. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Edition:1st ed. 2017.
Series:Studies in Computational Intelligence, 671
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-47557-8
LEADER 04587nam a22005295i 4500
001 978-3-319-47557-8
003 DE-He213
005 20210618233232.0
007 cr nn 008mamaa
008 170113s2017 gw | s |||| 0|eng d
020 |a 9783319475578  |9 978-3-319-47557-8 
024 7 |a 10.1007/978-3-319-47557-8  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Fuzzy Sets, Rough Sets, Multisets and Clustering  |h [electronic resource] /  |c edited by Vicenç Torra, Anders Dahlbom, Yasuo Narukawa. 
246 3 |a a 
250 |a 1st ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a X, 347 p. 40 illus., 15 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 671 
505 0 |a On this book: clustering, multisets, rough sets and fuzzy sets -- Part 1: Clustering and Classification -- Contributions of Fuzzy Concepts to Data Clustering -- Fuzzy Clustering/Co-clustering and Probabilistic Mixture Models-induced Algorithms -- Semi-Supervised Fuzzy c-Means Algorithms by Revising Dissimilarity/Kernel Matrices -- Various Types of Objective-Based Rough Clustering -- On Some Clustering Algorithms Based on Tolerance -- Robust Clustering Algorithms Employing Fuzzy-Possibilistic Product Partition -- Consensus-based agglomerative hierarchical clustering -- Using a reverse engineering type paradigm in clustering. An evolutionary pro-gramming based approach -- On Hesitant Fuzzy Clustering and Clustering of Hesitant Fuzzy Data -- Experiences using Decision Trees for Knowledge Discovery -- Part 2: Bags, Fuzzy Bags, and Some Other Fuzzy Extensions -- L-fuzzy Bags -- A Perspective on Differences between Atanassov’s Intuitionistic Fuzzy Sets and Interval-valued Fuzzy Sets -- Part 3: Rough Sets -- Attribute Importance Degrees Corresponding to Several Kinds of Attribute Reduction in the Setting of the Classical Rough Sets -- A Review on Rough Set-based Interrelationship Mining -- Part 4: Fuzzy sets and decision making -- OWA Aggregation of Probability Distributions Using the Probabilistic Exceedance Method -- A dynamic average value-at-risk portfolio model with fuzzy random variables -- Group Decision Making: Consensus Approaches based on Soft Consensus Measures -- Construction of capacities from overlap indexes -- Clustering alternatives and learning preferences based on decision attitudes and weighted overlap dominance. 
520 |a This book is dedicated to Prof. Sadaaki Miyamoto and presents cutting-edge papers in some of the areas in which he contributed. Bringing together contributions by leading researchers in the field, it concretely addresses clustering, multisets, rough sets and fuzzy sets, as well as their applications in areas such as decision-making. The book is divided in four parts, the first of which focuses on clustering and classification. The second part puts the spotlight on multisets, bags, fuzzy bags and other fuzzy extensions, while the third deals with rough sets. Rounding out the coverage, the last part explores fuzzy sets and decision-making. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
700 1 |a Torra, Vicenç.  |e editor.  |0 (orcid)0000-0002-0368-8037  |1 https://orcid.org/0000-0002-0368-8037  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Dahlbom, Anders.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Narukawa, Yasuo.  |e editor.  |0 (orcid)0000-0001-9928-1444  |1 https://orcid.org/0000-0001-9928-1444  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319475561 
776 0 8 |i Printed edition:  |z 9783319475585 
776 0 8 |i Printed edition:  |z 9783319837673 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 671 
856 4 0 |u https://doi.org/10.1007/978-3-319-47557-8 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)