An Integrated Solution Based Irregular Driving Detection

This thesis introduces a new integrated algorithm for the detection of lane-level irregular driving. To date, there has been very little improvement in the ability to detect lane level irregular driving styles, mainly due to a lack of high performance positioning techniques and suitable driving patt...

Full description

Main Author: Sun, Rui. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Edition:1st ed. 2017.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-44926-5
LEADER 04069nam a22006375i 4500
001 978-3-319-44926-5
003 DE-He213
005 20210619183304.0
007 cr nn 008mamaa
008 160907s2017 gw | s |||| 0|eng d
020 |a 9783319449265  |9 978-3-319-44926-5 
024 7 |a 10.1007/978-3-319-44926-5  |2 doi 
050 4 |a TA1001-1280 
050 4 |a HE331-380 
072 7 |a TNH  |2 bicssc 
072 7 |a TEC009020  |2 bisacsh 
072 7 |a TNH  |2 thema 
082 0 4 |a 629.04  |2 23 
100 1 |a Sun, Rui.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Integrated Solution Based Irregular Driving Detection  |h [electronic resource] /  |c by Rui Sun. 
250 |a 1st ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XXVIII, 127 p. 84 illus., 75 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Table of Contents -- Acknowledgements -- Declaration of Contribution -- Copyright Declaration -- Abstract.-Chapter 1 Introduction -- Chapter 2 Road Safety and Intelligent Transport Systems -- Chapter 3 State-of-the-art in Irregular Driving Detection -- Chapter 4 A New System for Lane Level Irregular Driving Detection.-Chapter 5 Testing, Analysis and Performance Validation -- Chapter 6 Conclusion and Recommendations for Future Work -- Publications Related to This Thesis -- Reference -- APPENDIX 1. Field Test Risk Assessment. 
520 |a This thesis introduces a new integrated algorithm for the detection of lane-level irregular driving. To date, there has been very little improvement in the ability to detect lane level irregular driving styles, mainly due to a lack of high performance positioning techniques and suitable driving pattern recognition algorithms. The algorithm combines data from the Global Positioning System (GPS), Inertial Measurement Unit (IMU) and lane information using advanced filtering methods. The vehicle state within a lane is estimated using a Particle Filter (PF) and an Extended Kalman Filter (EKF). The state information is then used within a novel Fuzzy Inference System (FIS) based algorithm to detect different types of irregular driving. Simulation and field trial results are used to demonstrate the accuracy and reliability of the proposed irregular driving detection method. 
650 0 |a Transportation engineering. 
650 0 |a Traffic engineering. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Quality control. 
650 0 |a Reliability. 
650 0 |a Industrial safety. 
650 0 |a Control engineering. 
650 0 |a Application software. 
650 1 4 |a Transportation Technology and Traffic Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T23120 
650 2 4 |a Signal, Image and Speech Processing.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T24051 
650 2 4 |a Quality Control, Reliability, Safety and Risk.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T22032 
650 2 4 |a Control and Systems Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T19010 
650 2 4 |a Computer Applications.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I23001 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319449258 
776 0 8 |i Printed edition:  |z 9783319449272 
776 0 8 |i Printed edition:  |z 9783319831640 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u https://doi.org/10.1007/978-3-319-44926-5 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)