Analytical Mechanics

This advanced undergraduate textbook begins with the Lagrangian formulation of Analytical Mechanics and then passes directly to the Hamiltonian formulation and the canonical equations, with constraints incorporated through Lagrange multipliers. Hamilton's Principle and the canonical equations r...

Full description

Main Author: Helrich, Carl S. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Edition:1st ed. 2017.
Series:Undergraduate Lecture Notes in Physics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-44491-8
LEADER 03453nam a22005175i 4500
001 978-3-319-44491-8
003 DE-He213
005 20210708074227.0
007 cr nn 008mamaa
008 161001s2017 gw | s |||| 0|eng d
020 |a 9783319444918  |9 978-3-319-44491-8 
024 7 |a 10.1007/978-3-319-44491-8  |2 doi 
050 4 |a QC120-168.85 
050 4 |a QA808.2 
072 7 |a PHD  |2 bicssc 
072 7 |a SCI041000  |2 bisacsh 
072 7 |a PHD  |2 thema 
082 0 4 |a 531  |2 23 
100 1 |a Helrich, Carl S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analytical Mechanics  |h [electronic resource] /  |c by Carl S. Helrich. 
250 |a 1st ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XV, 349 p. 58 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Lecture Notes in Physics,  |x 2192-4791 
505 0 |a History -- Lagrangian Mechanics -- Hamiltonian Mechanics -- Solid Bodies -- Hamilton-Jacobi Approach -- Complex Systems -- Chaos in Dynamical Systems -- Special Relativity -- Appendices -- Differential of S -- Hamilton-Jacobi Equation -- With Variables p, q, q -- Zero-Component Lemma -- Maxwell Equations from Field Strength Tensor -- Differential Operators -- Answers to Selected Exercises.       . 
520 |a This advanced undergraduate textbook begins with the Lagrangian formulation of Analytical Mechanics and then passes directly to the Hamiltonian formulation and the canonical equations, with constraints incorporated through Lagrange multipliers. Hamilton's Principle and the canonical equations remain the basis of the remainder of the text. Topics considered for applications include small oscillations, motion in electric and magnetic fields, and rigid body dynamics. The Hamilton-Jacobi approach is developed with special attention to the canonical transformation in order to provide a smooth and logical transition into the study of complex and chaotic systems. Finally the text has a careful treatment of relativistic mechanics and the requirement of Lorentz invariance. The text is enriched with an outline of the history of mechanics, which particularly outlines the importance of the work of Euler, Lagrange, Hamilton and Jacobi. Numerous exercises with solutions support the exceptionally clear and concise treatment of Analytical Mechanics.  . 
650 0 |a Mechanics. 
650 0 |a Physics. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Classical Mechanics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P21018 
650 2 4 |a Mathematical Methods in Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P19013 
650 2 4 |a Theoretical and Applied Mechanics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T15001 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319444901 
776 0 8 |i Printed edition:  |z 9783319444925 
830 0 |a Undergraduate Lecture Notes in Physics,  |x 2192-4791 
856 4 0 |u https://doi.org/10.1007/978-3-319-44491-8 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)