Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases

The contributions by epidemic modeling experts describe how mathematical models and statistical forecasting are created to capture the most important aspects of an emerging epidemic.Readers will discover a broad range of approaches to address questions, such as Can we control Ebola via ring vaccinat...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Chowell, Gerardo. (Editor, http://id.loc.gov/vocabulary/relators/edt), Hyman, James M. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edition:1st ed. 2016.
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-40413-4
LEADER 05567nam a22005535i 4500
001 978-3-319-40413-4
003 DE-He213
005 20210617115425.0
007 cr nn 008mamaa
008 160727s2016 gw | s |||| 0|eng d
020 |a 9783319404134  |9 978-3-319-40413-4 
024 7 |a 10.1007/978-3-319-40413-4  |2 doi 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
245 1 0 |a Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases  |h [electronic resource] /  |c edited by Gerardo Chowell, James M. Hyman. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a IX, 356 p. 94 illus., 63 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- A Reality of Its Own -- Modeling the Impact of Behavior Change on the Spread of Ebola -- A model for coupled outbreaks contained by behavior change -- Real-time assessment of the international spreading risk associated with the 2014 West African Ebola Outbreak -- Modeling the case of early detection of Ebola virus disease -- Modeling ring vaccination strategies to control Ebola virus disease epidemics -- Estimation of the number of sickbeds during Ebola epidemics using optimal control theory -- Inverse problems and Ebola virus disease using an age of infection model -- Assessing the Efficiency of Movement -- Restriction as a Control Strategy of Ebola -- Patch models of EVD transmission dynamics -- From bee species aggregation to models of disease avoidance: The \emph{Ben-Hur} effect} -- Designing Public Health Policies to Mitigate the Adverse Consequences of Rural-Urban Migration via Meta-Population Modeling -- Age of Infection Epidemic Models -- Optimal Control of Vaccination in an Age-Structured Cholera Model -- A Multi-risk Model for Understanding the Spread of Chlamydia -- The 1997 Measles Outbreak in Metropolitan São Paulo, Brazil: Strategic Implications of Increasing Urbanization -- Methods to determine the end of an infectious disease epidemic: A short review -- Statistical considerations in infectious disease randomized controlled trials -- Epidemic models with and without mortality: when does it matter?- Capturing Household Transmission in Compartmental Models of Infectious Disease -- Bistable endemic states in a Susceptible-Infectious-Susceptible model with behavior-dependent Vaccination -- Index. 
520 |a The contributions by epidemic modeling experts describe how mathematical models and statistical forecasting are created to capture the most important aspects of an emerging epidemic.Readers will discover a broad range of approaches to address questions, such as Can we control Ebola via ring vaccination strategies? How quickly should we detect Ebola cases to ensure epidemic control? What is the likelihood that an Ebola epidemic in West Africa leads to secondary outbreaks in other parts of the world? When does it matter to incorporate the role of disease-induced mortality on epidemic models? What is the role of behavior changes on Ebola dynamics? How can we better understand the control of cholera or Ebola using optimal control theory? How should a population be structured in order to mimic the transmission dynamics of diseases such as chlamydia, Ebola, or cholera? How can we objectively determine the end of an epidemic? How can we use metapopulation models to understand the role of movement restrictions and migration patterns on the spread of infectious diseases? How can we capture the impact of household transmission using compartmental epidemic models? How could behavior-dependent vaccination affect the dynamical outcomes of epidemic models? The derivation and analysis of the mathematical models addressing these questions provides a wide-ranging overview of the new approaches being created to better forecast and mitigate emerging epidemics. This book will be of interest to researchers in the field of mathematical epidemiology, as well as public health workers. 
650 0 |a Probabilities. 
650 0 |a Infectious diseases. 
650 0 |a Statistics . 
650 0 |a Epidemiology. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Infectious Diseases.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/H33096 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17030 
650 2 4 |a Epidemiology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/H63000 
700 1 |a Chowell, Gerardo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Hyman, James M.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319404110 
776 0 8 |i Printed edition:  |z 9783319404127 
776 0 8 |i Printed edition:  |z 9783319820941 
856 4 0 |u https://doi.org/10.1007/978-3-319-40413-4 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)