Control of Magnetotransport in Quantum Billiards Theory, Computation and Applications /

In this book the coherent quantum transport of electrons through two-dimensional mesoscopic structures is explored in dependence of the interplay between the confining geometry and the impact of applied magnetic fields, aiming at conductance controllability. After a top-down, insightful presentation...

Full description

Main Authors: Morfonios, Christian V. (Author, http://id.loc.gov/vocabulary/relators/aut), Schmelcher, Peter. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Edition:1st ed. 2017.
Series:Lecture Notes in Physics, 927
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-39833-4
LEADER 04817nam a22006255i 4500
001 978-3-319-39833-4
003 DE-He213
005 20210625113435.0
007 cr nn 008mamaa
008 161116s2017 gw | s |||| 0|eng d
020 |a 9783319398334  |9 978-3-319-39833-4 
024 7 |a 10.1007/978-3-319-39833-4  |2 doi 
050 4 |a QC610.9-611.8 
072 7 |a TJFD5  |2 bicssc 
072 7 |a TEC008090  |2 bisacsh 
072 7 |a TJFD  |2 thema 
082 0 4 |a 537.622  |2 23 
100 1 |a Morfonios, Christian V.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Control of Magnetotransport in Quantum Billiards  |h [electronic resource] :  |b Theory, Computation and Applications /  |c by Christian V. Morfonios, Peter Schmelcher. 
250 |a 1st ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a X, 252 p. 49 illus., 48 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 927 
505 0 |a Introduction -- Electrons in mesoscopic low-dimensional systems -- Coherent electronic transport: Landauer-Büttiker formalism -- Stationary scattering in planar confining geometries -- Computational quantum transport in multiterminal and multiply connected structures -- Magnetoconductance switching by phase modulation in arrays of oval quantum billiards -- Current control in soft-wall electron billiards: energy-persistent scattering in the deep quantum regime -- Directional transport in multiterminal focusing quantum billiards -- Summary, conclusions, and perspectives. 
520 |a In this book the coherent quantum transport of electrons through two-dimensional mesoscopic structures is explored in dependence of the interplay between the confining geometry and the impact of applied magnetic fields, aiming at conductance controllability. After a top-down, insightful presentation of the elements of mesoscopic devices and transport theory, a computational technique which treats multiterminal structures of arbitrary geometry and topology is developed. The method relies on the modular assembly of the electronic propagators of subsystems which are inter- or intra-connected providing large flexibility in system setups combined with high computational efficiency. Conductance control is first demonstrated for elongated quantum billiards and arrays thereof where a weak magnetic field tunes the current by phase modulation of interfering lead-coupled states geometrically separated from confined states. Soft-wall potentials are then employed for efficient and robust conductance switching by isolating energy persistent, collimated or magnetically deflected electron paths from Fano resonances. In a multiterminal configuration, the guiding and focusing property of curved boundary sections enables magnetically controlled directional transport with input electron waves flowing exclusively to selected outputs. Together with a comprehensive analysis of characteristic transport features and spatial distributions of scattering states, the results demonstrate the geometrically assisted design of magnetoconductance control elements in the linear response regime. 
650 0 |a Semiconductors. 
650 0 |a Optical materials. 
650 0 |a Electronic materials. 
650 0 |a Nanotechnology. 
650 0 |a Magnetism. 
650 0 |a Magnetic materials. 
650 0 |a Nanoscale science. 
650 0 |a Nanoscience. 
650 0 |a Nanostructures. 
650 1 4 |a Semiconductors.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P25150 
650 2 4 |a Optical and Electronic Materials.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/Z12000 
650 2 4 |a Nanotechnology and Microengineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T18000 
650 2 4 |a Magnetism, Magnetic Materials.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P25129 
650 2 4 |a Nanoscale Science and Technology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P25140 
700 1 |a Schmelcher, Peter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319398310 
776 0 8 |i Printed edition:  |z 9783319398327 
830 0 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 927 
856 4 0 |u https://doi.org/10.1007/978-3-319-39833-4 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)