Introduction to Probability with Statistical Applications

Now in its second edition, this textbook serves as an introduction to probability and statistics for non-mathematics majors who do not need the exhaustive detail and mathematical depth provided in more comprehensive treatments of the subject. The presentation covers the mathematical laws of random p...

Full description

Main Author: Schay, Géza. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Edition:2nd ed. 2016.
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-30620-9
LEADER 04820nam a22005775i 4500
001 978-3-319-30620-9
003 DE-He213
005 20210616032231.0
007 cr nn 008mamaa
008 160617s2016 gw | s |||| 0|eng d
020 |a 9783319306209  |9 978-3-319-30620-9 
024 7 |a 10.1007/978-3-319-30620-9  |2 doi 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Schay, Géza.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Probability with Statistical Applications  |h [electronic resource] /  |c by Géza Schay. 
250 |a 2nd ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XII, 385 p. 49 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- The Algebra of Events -- Combinatorial Problems -- Probabilities -- Random Variables -- Expectation, Variance, Moments -- Some Special Distributions -- The Elements of Mathematical Statistics. 
520 |a Now in its second edition, this textbook serves as an introduction to probability and statistics for non-mathematics majors who do not need the exhaustive detail and mathematical depth provided in more comprehensive treatments of the subject. The presentation covers the mathematical laws of random phenomena, including discrete and continuous random variables, expectation and variance, and common probability distributions such as the binomial, Poisson, and normal distributions. More classical examples such as Montmort's problem, the ballot problem, and Bertrand’s paradox are now included, along with applications such as the Maxwell-Boltzmann and Bose-Einstein distributions in physics. Key features in new edition: * 35 new exercises * Expanded section on the algebra of sets * Expanded chapters on probabilities to include more classical examples * New section on regression * Online instructors' manual containing solutions to all exercises <advanced undergraduate="" and="" graduate="" students="" in="" computer="" science,="" engineering,="" other="" natural="" social="" sciences="" with="" only="" a="" basic="" background="" calculus="" will="" benefit="" from="" this="" introductory="" text="" balancing="" theory="" applications.advanced="" applications. <advanced undergraduate="" and="" graduate="" students="" in="" computer="" science,="" engineering,="" other="" natural="" social="" sciences="" with="" only="" a="" basic="" background="" calculus="" will="" benefit="" from="" this="" introductory="" text="" balancing="" theory="" applications.review="" of="" the="" first="" edition: This textbook is a classical and well-written introduction to probability theory and statistics. … the book is written ‘for an audience such as computer science students, whose mathematical background is not very strong and who do not need the detail and mathematical depth of similar books written for mathematics or statistics majors.’ … Each new concept is clearly explained and is followed by many detailed examples. … numerous examples of calculations are given and proofs are well-detailed." (Sophie Lemaire, Mathematical Reviews, Issue 2008 m). 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 0 |a Mathematical statistics. 
650 0 |a Measure theory. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17020 
650 2 4 |a Probability and Statistics in Computer Science.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I17036 
650 2 4 |a Measure and Integration.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12120 
650 2 4 |a Applications of Mathematics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13003 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319306186 
776 0 8 |i Printed edition:  |z 9783319306193 
776 0 8 |i Printed edition:  |z 9783319808529 
856 4 0 |u https://doi.org/10.1007/978-3-319-30620-9 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)