Algebra for Cryptologists

This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has b...

Full description

Main Author: Meijer, Alko R. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edition:1st ed. 2016.
Series:Springer Undergraduate Texts in Mathematics and Technology,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-30396-3
LEADER 03734nam a22005175i 4500
001 978-3-319-30396-3
003 DE-He213
005 20210706074727.0
007 cr nn 008mamaa
008 160901s2016 gw | s |||| 0|eng d
020 |a 9783319303963  |9 978-3-319-30396-3 
024 7 |a 10.1007/978-3-319-30396-3  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Meijer, Alko R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Algebra for Cryptologists  |h [electronic resource] /  |c by Alko R. Meijer. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIV, 301 p. 6 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Texts in Mathematics and Technology,  |x 1867-5506 
505 0 |a Prerequisites and Notation -- Basic Properties of the Integers -- Groups, Rings and Ideals -- Applications to Public Key Cryptography -- Fields -- Properties of Finite Fields -- Applications to Stream Ciphers -- Boolean Functions -- Applications to Block Ciphers -- Number Theory in Public Key Cryptography -- Where do we go from here? -- Probability. . 
520 |a This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has been described as the science of the integrity of information, covering all aspects like confidentiality, authenticity and non-repudiation and also including the protocols required for achieving these aims. In both theory and practice it requires notions and constructions from three major disciplines: computer science, electronic engineering and mathematics. Within mathematics, group theory, the theory of finite fields, and elementary number theory as well as some topics not normally covered in courses in algebra, such as the theory of Boolean functions and Shannon theory, are involved. Although essentially self-contained, a degree of mathematical maturity on the part of the reader is assumed, corresponding to his or her background in computer science or engineering. Algebra for Cryptologists is a textbook for an introductory course in cryptography or an upper undergraduate course in algebra, or for self-study in preparation for postgraduate study in cryptology. 
650 0 |a Algebra. 
650 0 |a Data structures (Computer science). 
650 0 |a Computer science—Mathematics. 
650 1 4 |a Algebra.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11000 
650 2 4 |a Data Structures and Information Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I15009 
650 2 4 |a Discrete Mathematics in Computer Science.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I17028 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319303956 
776 0 8 |i Printed edition:  |z 9783319303970 
776 0 8 |i Printed edition:  |z 9783319807997 
830 0 |a Springer Undergraduate Texts in Mathematics and Technology,  |x 1867-5506 
856 4 0 |u https://doi.org/10.1007/978-3-319-30396-3 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)