|
|
|
|
LEADER |
03151nam a22005415i 4500 |
001 |
978-3-319-28929-8 |
003 |
DE-He213 |
005 |
20210617080059.0 |
007 |
cr nn 008mamaa |
008 |
160603s2016 gw | s |||| 0|eng d |
020 |
|
|
|a 9783319289298
|9 978-3-319-28929-8
|
024 |
7 |
|
|a 10.1007/978-3-319-28929-8
|2 doi
|
050 |
|
4 |
|a Q334-342
|
072 |
|
7 |
|a UYQ
|2 bicssc
|
072 |
|
7 |
|a COM004000
|2 bisacsh
|
072 |
|
7 |
|a UYQ
|2 thema
|
082 |
0 |
4 |
|a 006.3
|2 23
|
100 |
1 |
|
|a Oliehoek, Frans A.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
2 |
|a A Concise Introduction to Decentralized POMDPs
|h [electronic resource] /
|c by Frans A. Oliehoek, Christopher Amato.
|
250 |
|
|
|a 1st ed. 2016.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2016.
|
300 |
|
|
|a XX, 134 p. 36 illus., 22 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,
|x 2196-548X
|
505 |
0 |
|
|a Multiagent Systems Under Uncertainty -- The Decentralized POMDP Framework -- Finite-Horizon Dec-POMDPs -- Exact Finite-Horizon Planning Methods -- Approximate and Heuristic Finite-Horizon Planning Methods -- Infinite-Horizon Dec-POMDPs -- Infinite-Horizon Planning Methods: Discounted Cumulative Reward -- Infinite-Horizon Planning Methods: Average Reward -- Further Topics.
|
520 |
|
|
|a This book introduces multiagent planning under uncertainty as formalized by decentralized partially observable Markov decision processes (Dec-POMDPs). The intended audience is researchers and graduate students working in the fields of artificial intelligence related to sequential decision making: reinforcement learning, decision-theoretic planning for single agents, classical multiagent planning, decentralized control, and operations research. .
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Control engineering.
|
650 |
|
0 |
|a Robotics.
|
650 |
|
0 |
|a Mechatronics.
|
650 |
|
0 |
|a Mathematical optimization.
|
650 |
1 |
4 |
|a Artificial Intelligence.
|0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000
|
650 |
2 |
4 |
|a Control, Robotics, Mechatronics.
|0 https://scigraph.springernature.com/ontologies/product-market-codes/T19000
|
650 |
2 |
4 |
|a Optimization.
|0 https://scigraph.springernature.com/ontologies/product-market-codes/M26008
|
700 |
1 |
|
|a Amato, Christopher.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319289274
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319289281
|
830 |
|
0 |
|a SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,
|x 2196-548X
|
856 |
4 |
0 |
|u https://doi.org/10.1007/978-3-319-28929-8
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-SXCS
|
950 |
|
|
|a Computer Science (SpringerNature-11645)
|
950 |
|
|
|a Computer Science (R0) (SpringerNature-43710)
|