A Concise Introduction to Decentralized POMDPs

This book introduces multiagent planning under uncertainty as formalized by decentralized partially observable Markov decision processes (Dec-POMDPs). The intended audience is researchers and graduate students working in the fields of artificial intelligence related to sequential decision making: re...

Full description

Main Authors: Oliehoek, Frans A. (Author, http://id.loc.gov/vocabulary/relators/aut), Amato, Christopher. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edition:1st ed. 2016.
Series:SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-28929-8
LEADER 03151nam a22005415i 4500
001 978-3-319-28929-8
003 DE-He213
005 20210617080059.0
007 cr nn 008mamaa
008 160603s2016 gw | s |||| 0|eng d
020 |a 9783319289298  |9 978-3-319-28929-8 
024 7 |a 10.1007/978-3-319-28929-8  |2 doi 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Oliehoek, Frans A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Concise Introduction to Decentralized POMDPs  |h [electronic resource] /  |c by Frans A. Oliehoek, Christopher Amato. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XX, 134 p. 36 illus., 22 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,  |x 2196-548X 
505 0 |a Multiagent Systems Under Uncertainty -- The Decentralized POMDP Framework -- Finite-Horizon Dec-POMDPs -- Exact Finite-Horizon Planning Methods -- Approximate and Heuristic Finite-Horizon Planning Methods -- Infinite-Horizon Dec-POMDPs -- Infinite-Horizon Planning Methods: Discounted Cumulative Reward -- Infinite-Horizon Planning Methods: Average Reward -- Further Topics. 
520 |a This book introduces multiagent planning under uncertainty as formalized by decentralized partially observable Markov decision processes (Dec-POMDPs). The intended audience is researchers and graduate students working in the fields of artificial intelligence related to sequential decision making: reinforcement learning, decision-theoretic planning for single agents, classical multiagent planning, decentralized control, and operations research. . 
650 0 |a Artificial intelligence. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 0 |a Mathematical optimization. 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Control, Robotics, Mechatronics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T19000 
650 2 4 |a Optimization.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M26008 
700 1 |a Amato, Christopher.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319289274 
776 0 8 |i Printed edition:  |z 9783319289281 
830 0 |a SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,  |x 2196-548X 
856 4 0 |u https://doi.org/10.1007/978-3-319-28929-8 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)