Iterative Solution of Large Sparse Systems of Equations

In the second edition of this classic monograph, complete with four new chapters and updated references, readers will now have access to content describing and analysing classical and modern methods with emphasis on the algebraic structure of linear iteration, which is usually ignored in other liter...

Full description

Main Author: Hackbusch, Wolfgang. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edition:2nd ed. 2016.
Series:Applied Mathematical Sciences, 95
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-28483-5
LEADER 03774nam a22005295i 4500
001 978-3-319-28483-5
003 DE-He213
005 20210706072434.0
007 cr nn 008mamaa
008 160621s2016 gw | s |||| 0|eng d
020 |a 9783319284835  |9 978-3-319-28483-5 
024 7 |a 10.1007/978-3-319-28483-5  |2 doi 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Hackbusch, Wolfgang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Iterative Solution of Large Sparse Systems of Equations  |h [electronic resource] /  |c by Wolfgang Hackbusch. 
250 |a 2nd ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXIII, 509 p. 26 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 95  
505 0 |a Part I: Linear Iterations -- Introduction -- Iterative Methods -- Classical Linear Iterations in the Positive Definite Case -- Analysis of Classical Iterations Under Special Structural Conditions -- Algebra of Linear Iterations -- Analysis of Positive Definite Iterations -- Generation of Iterations. Part II: Semi-Iterations and Krylov Methods -- Semi-Iterative Methods -- Gradient Methods -- Conjugate Gradient Methods and Generalizations -- Part III: Special Iterations -- Multigrid Iterations -- Domain Decomposition and Subspace Methods -- H-LU Iteration -- Tensor-based Methods -- Appendices. 
520 |a In the second edition of this classic monograph, complete with four new chapters and updated references, readers will now have access to content describing and analysing classical and modern methods with emphasis on the algebraic structure of linear iteration, which is usually ignored in other literature. The necessary amount of work increases dramatically with the size of systems, so one has to search for algorithms that most efficiently and accurately solve systems of, e.g., several million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretization of partial differential equations. In this case, the matrices are sparse (i.e., they contain mostly zeroes) and well-suited to iterative algorithms. The first edition of this book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics. The second edition includes quite novel approaches. 
650 0 |a Numerical analysis. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Partial differential equations. 
650 1 4 |a Numerical Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14050 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11094 
650 2 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319284811 
776 0 8 |i Printed edition:  |z 9783319284828 
776 0 8 |i Printed edition:  |z 9783319803609 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 95  
856 4 0 |u https://doi.org/10.1007/978-3-319-28483-5 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)