Big-Data Analytics and Cloud Computing Theory, Algorithms and Applications /

This important and timely text/reference reviews the theoretical concepts, leading-edge techniques and practical tools involved in the latest multi-disciplinary approaches addressing the challenges of big data. Illuminating perspectives from both academia and industry are presented by an internation...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Trovati, Marcello. (Editor, http://id.loc.gov/vocabulary/relators/edt), Hill, Richard. (Editor, http://id.loc.gov/vocabulary/relators/edt), Anjum, Ashiq. (Editor, http://id.loc.gov/vocabulary/relators/edt), Zhu, Shao Ying. (Editor, http://id.loc.gov/vocabulary/relators/edt), Liu, Lu. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-25313-8
LEADER 04813nam a22005655i 4500
001 978-3-319-25313-8
003 DE-He213
005 20210615073922.0
007 cr nn 008mamaa
008 160112s2015 gw | s |||| 0|eng d
020 |a 9783319253138  |9 978-3-319-25313-8 
024 7 |a 10.1007/978-3-319-25313-8  |2 doi 
050 4 |a QA276-280 
072 7 |a UYAM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
072 7 |a UYAM  |2 thema 
072 7 |a UFM  |2 thema 
082 0 4 |a 005.55  |2 23 
245 1 0 |a Big-Data Analytics and Cloud Computing  |h [electronic resource] :  |b Theory, Algorithms and Applications /  |c edited by Marcello Trovati, Richard Hill, Ashiq Anjum, Shao Ying Zhu, Lu Liu. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVI, 169 p. 67 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a This important and timely text/reference reviews the theoretical concepts, leading-edge techniques and practical tools involved in the latest multi-disciplinary approaches addressing the challenges of big data. Illuminating perspectives from both academia and industry are presented by an international selection of experts in big data science. Topics and features: Describes the innovative advances in theoretical aspects of big data, predictive analytics and cloud-based architectures Examines the applications and implementations that utilize big data in cloud architectures Surveys the state of the art in architectural approaches to the provision of cloud-based big data analytics functions Identifies potential research directions and technologies to facilitate the realization of emerging business models through big data approaches Provides relevant theoretical frameworks, empirical research findings, and numerous case studies Discusses real-world applications of algorithms and techniques to address the challenges of big datasets This authoritative volume will be of great interest to researchers, enterprise architects, business analysts, IT infrastructure managers and application developers, who will benefit from the valuable insights offered into the adoption of architectures for big data and cloud computing. The work is also suitable as a textbook for university instructors, with the outline for a possible course structure suggested in the preface. The editors are all members of the Computing and Mathematics Department at the University of Derby, UK, where Dr. Marcello Trovati serves as a Senior Lecturer in Mathematics, Dr. Richard Hillas a Professor and Head of the Computing and Mathematics Department, Dr. Ashiq Anjum as a Professor of Distributed Computing, Dr. Shao Ying Zhu as a Senior Lecturer in Computing, and Dr. Lu Liu as a Professor of Distributed Computing. The other publications of the editors include the Springer titles Guide to Security Assurance for Cloud Computing, Guide to Cloud Computing and Cloud Computing for Enterprise Architectures. 
650 0 |a Mathematical statistics. 
650 0 |a Computer communication systems. 
650 0 |a Computer simulation. 
650 0 |a Computer science—Mathematics. 
650 1 4 |a Probability and Statistics in Computer Science.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I17036 
650 2 4 |a Computer Communication Networks.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I13022 
650 2 4 |a Simulation and Modeling.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I19000 
650 2 4 |a Math Applications in Computer Science.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I17044 
700 1 |a Trovati, Marcello.  |e editor.  |0 (orcid)0000-0001-6607-422X  |1 https://orcid.org/0000-0001-6607-422X  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Hill, Richard.  |e editor.  |0 (orcid)0000-0003-0105-7730  |1 https://orcid.org/0000-0003-0105-7730  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Anjum, Ashiq.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zhu, Shao Ying.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Liu, Lu.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319253114 
776 0 8 |i Printed edition:  |z 9783319253121 
776 0 8 |i Printed edition:  |z 9783319797670 
856 4 0 |u https://doi.org/10.1007/978-3-319-25313-8 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)