Diffractive Optics and Nanophotonics Resolution Below the Diffraction Limit /

In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz ra...

Full description

Main Authors: Minin, Igor. (Author, http://id.loc.gov/vocabulary/relators/aut), Minin, Oleg. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edition:1st ed. 2016.
Series:SpringerBriefs in Physics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-24253-8
LEADER 04612nam a22006255i 4500
001 978-3-319-24253-8
003 DE-He213
005 20210625071929.0
007 cr nn 008mamaa
008 151029s2016 gw | s |||| 0|eng d
020 |a 9783319242538  |9 978-3-319-24253-8 
024 7 |a 10.1007/978-3-319-24253-8  |2 doi 
050 4 |a TA1671-1707 
050 4 |a TA1501-1820 
072 7 |a PHJ  |2 bicssc 
072 7 |a SCI053000  |2 bisacsh 
072 7 |a PHJ  |2 thema 
072 7 |a TTB  |2 thema 
082 0 4 |a 621.36  |2 23 
100 1 |a Minin, Igor.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Diffractive Optics and Nanophotonics  |h [electronic resource] :  |b Resolution Below the Diffraction Limit /  |c by Igor Minin, Oleg Minin. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIV, 65 p. 26 illus., 6 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Physics,  |x 2191-5423 
505 0 |a Foreword -- Introduction -- 1 3D Diffractive Lenses to Overcome the 3D Abby diffraction limit -- 2 Subwavelength Focusing Properties of Diffractive Photonic Crystal Lens -- 3 Photonic Jet Formation By Non Spherical Axially and Spatially Asymmetric 3D Dielectric Particles -- 4 SPP Diffractive Lens as one of the Basic Devices for Plasmonic Information Processing -- Conclusion. 
520 |a In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible.  With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Terahertz frequencies (terajets) using 3D dielectric particles of arbitrary size (cuboids) is considered.  A scheme to create a 2D “teraknife” using dielectric rods is also discussed.  In the final chapter the successful adaptation of free-space 3D binary phase-reversal conical FZPs for operation on surface plasmon-polariton (SPP) waves demonstrates that analogues of Fourier diffractive components can be developed for in-plane SPP 3D optics. Review ing theory, modelling and experiment, this book will be a valuable resource for students and researchers working on nanophotonics and sub-wavelength focusing and imaging. 
650 0 |a Lasers. 
650 0 |a Photonics. 
650 0 |a Microwaves. 
650 0 |a Optical engineering. 
650 0 |a Optical materials. 
650 0 |a Electronic materials. 
650 0 |a Nanoscale science. 
650 0 |a Nanoscience. 
650 0 |a Nanostructures. 
650 1 4 |a Optics, Lasers, Photonics, Optical Devices.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P31030 
650 2 4 |a Microwaves, RF and Optical Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T24019 
650 2 4 |a Optical and Electronic Materials.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/Z12000 
650 2 4 |a Nanoscale Science and Technology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P25140 
700 1 |a Minin, Oleg.  |e author.  |0 (orcid)0000-0002-9749-2106  |1 https://orcid.org/0000-0002-9749-2106  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319242514 
776 0 8 |i Printed edition:  |z 9783319242521 
830 0 |a SpringerBriefs in Physics,  |x 2191-5423 
856 4 0 |u https://doi.org/10.1007/978-3-319-24253-8 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)