Internally Heated Convection and Rayleigh-Bénard Convection

This Brief describes six basic models of buoyancy-driven convection in a fluid layer: three configurations of internally heated convection and three configurations of Rayleigh-Bénard convection. The author discusses the main quantities that characterize heat transport in each model, along with the c...

Full description

Main Author: Goluskin, David. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edition:1st ed. 2016.
Series:SpringerBriefs in Thermal Engineering and Applied Science,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-23941-5
LEADER 03087nam a22005415i 4500
001 978-3-319-23941-5
003 DE-He213
005 20210617113939.0
007 cr nn 008mamaa
008 151121s2016 gw | s |||| 0|eng d
020 |a 9783319239415  |9 978-3-319-23941-5 
024 7 |a 10.1007/978-3-319-23941-5  |2 doi 
050 4 |a TJ265 
050 4 |a QC319.8-338.5 
072 7 |a TGMB  |2 bicssc 
072 7 |a SCI065000  |2 bisacsh 
072 7 |a TGMB  |2 thema 
082 0 4 |a 621.4021  |2 23 
100 1 |a Goluskin, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Internally Heated Convection and Rayleigh-Bénard Convection  |h [electronic resource] /  |c by David Goluskin. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a VIII, 64 p. 9 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Thermal Engineering and Applied Science,  |x 2193-2530 
505 0 |a A Family of Convective Models -- Stabilities and Bounds -- Experiments and Simulations on Internally Heated Convection. 
520 |a This Brief describes six basic models of buoyancy-driven convection in a fluid layer: three configurations of internally heated convection and three configurations of Rayleigh-Bénard convection. The author discusses the main quantities that characterize heat transport in each model, along with the constraints on these quantities. This presentation is the first to place the various models in a unified framework, and similarities and differences between the cases are highlighted. Necessary and sufficient conditions for convective motion are given. For the internally heated cases only, parameter-dependent lower bounds on the mean fluid temperature are proven, and results of past simulations and laboratory experiments are summarized and reanalyzed. The author poses several open questions for future study. 
650 0 |a Thermodynamics. 
650 0 |a Heat engineering. 
650 0 |a Heat transfer. 
650 0 |a Mass transfer. 
650 0 |a Fluid mechanics. 
650 1 4 |a Engineering Thermodynamics, Heat and Mass Transfer.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T14000 
650 2 4 |a Engineering Fluid Dynamics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T15044 
650 2 4 |a Thermodynamics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P21050 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319239392 
776 0 8 |i Printed edition:  |z 9783319239408 
830 0 |a SpringerBriefs in Thermal Engineering and Applied Science,  |x 2193-2530 
856 4 0 |u https://doi.org/10.1007/978-3-319-23941-5 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)