Counting with Symmetric Functions

This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics. It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate conc...

Full description

Main Authors: Remmel, Jeffrey. (Author, http://id.loc.gov/vocabulary/relators/aut), Mendes, Anthony. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:Developments in Mathematics, 43
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-23618-6
LEADER 04134nam a22005295i 4500
001 978-3-319-23618-6
003 DE-He213
005 20210702131409.0
007 cr nn 008mamaa
008 151128s2015 gw | s |||| 0|eng d
020 |a 9783319236186  |9 978-3-319-23618-6 
024 7 |a 10.1007/978-3-319-23618-6  |2 doi 
050 4 |a QA164-167.2 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
072 7 |a PBV  |2 thema 
082 0 4 |a 511.6  |2 23 
100 1 |a Remmel, Jeffrey.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Counting with Symmetric Functions  |h [electronic resource] /  |c by Jeffrey Remmel, Anthony Mendes. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a X, 292 p. 209 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Developments in Mathematics,  |x 1389-2177 ;  |v 43 
505 0 |a Preface -- Permutations, Partitions, and Power Series -- Symmetric Functions -- Counting with the Elementary and Homogeneous -- Counting with a Nonstandard Basis -- Counting with RSK -- Counting Problems that Involve Symmetry -- Consecutive Patterns -- The Reciprocity Method -- Appendix: Transition Matrices -- References -- Index. 
520 |a This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics. It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions. Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions. Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4. The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enumeration theorem using symmetric functions. Chapters 7 and 8 are more specialized than the preceding ones, covering consecutive pattern matches in permutations, words, cycles, and alternating permutations and introducing the reciprocity method as a way to define ring homomorphisms with desirable properties. Counting with Symmetric Functions will appeal to graduate students and researchers in mathematics or related subjects who are interested in counting methods, generating functions, or symmetric functions. The unique approach taken and results and exercises explored by the authors make it an important contribution to the mathematical literature. 
650 0 |a Combinatorics. 
650 0 |a Special functions. 
650 0 |a Sequences (Mathematics). 
650 1 4 |a Combinatorics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M29010 
650 2 4 |a Special Functions.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1221X 
650 2 4 |a Sequences, Series, Summability.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1218X 
700 1 |a Mendes, Anthony.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319236179 
776 0 8 |i Printed edition:  |z 9783319236193 
776 0 8 |i Printed edition:  |z 9783319795102 
830 0 |a Developments in Mathematics,  |x 1389-2177 ;  |v 43 
856 4 0 |u https://doi.org/10.1007/978-3-319-23618-6 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)