Dynamics of Quasi-Stable Dissipative Systems

This book is devoted to background material and recently developed mathematical methods in the study of infinite-dimensional dissipative systems. The theory of such systems is motivated by the long-term goal to establish rigorous mathematical models for turbulent and chaotic phenomena. The aim here...

Full description

Main Author: Chueshov, Igor. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:Universitext,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-22903-4
LEADER 03168nam a22005295i 4500
001 978-3-319-22903-4
003 DE-He213
005 20210617084702.0
007 cr nn 008mamaa
008 150929s2015 gw | s |||| 0|eng d
020 |a 9783319229034  |9 978-3-319-22903-4 
024 7 |a 10.1007/978-3-319-22903-4  |2 doi 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBWR  |2 thema 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Chueshov, Igor.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Dynamics of Quasi-Stable Dissipative Systems  |h [electronic resource] /  |c by Igor Chueshov. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVII, 390 p. 9 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Preface -- Introduction -- Basic Concepts -- General Facts on Dissipative Systems -- Finite-Dimensional Behavior and Quasi-Stability -- Abstract Parabolic Problems -- Second Order Evolution Equations -- Delay equations in infinite-dimensional spaces -- Auxiliary Facts -- References -- Index. 
520 |a This book is devoted to background material and recently developed mathematical methods in the study of infinite-dimensional dissipative systems. The theory of such systems is motivated by the long-term goal to establish rigorous mathematical models for turbulent and chaotic phenomena. The aim here is to offer general methods and abstract results pertaining to fundamental dynamical systems properties related to dissipative long-time behavior. The book systematically presents, develops and uses the quasi-stability method while substantially extending it by including for consideration new classes of models and PDE systems arising in Continuum Mechanics. The book can be used as a textbook in dissipative dynamics at the graduate level. Igor Chueshov is a Professor of Mathematics at Karazin Kharkov National University in Kharkov, Ukraine. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Partial differential equations. 
650 0 |a Physics. 
650 1 4 |a Dynamical Systems and Ergodic Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 
650 2 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
650 2 4 |a Mathematical Methods in Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P19013 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319229027 
776 0 8 |i Printed edition:  |z 9783319229041 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u https://doi.org/10.1007/978-3-319-22903-4 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)