Detection of Random Signals in Dependent Gaussian Noise

The book presents the necessary mathematical basis to obtain and rigorously use likelihoods for detection problems with Gaussian noise. To facilitate comprehension the text is divided into three broad areas – reproducing kernel Hilbert spaces, Cramér-Hida representations and stochastic calculus – fo...

Full description

Main Author: Gualtierotti, Antonio F. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-22315-5
LEADER 03373nam a22005175i 4500
001 978-3-319-22315-5
003 DE-He213
005 20210618214500.0
007 cr nn 008mamaa
008 151215s2015 gw | s |||| 0|eng d
020 |a 9783319223155  |9 978-3-319-22315-5 
024 7 |a 10.1007/978-3-319-22315-5  |2 doi 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Gualtierotti, Antonio F.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Detection of Random Signals in Dependent Gaussian Noise  |h [electronic resource] /  |c by Antonio F. Gualtierotti. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XXXIV, 1176 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Prolog -- Part I: Reproducing Kernel Hilbert Spaces -- Part II: Cramér-Hida Representations -- Part III: Likelihoods -- Credits and Comments -- Notation and Terminology -- References -- Index. 
520 |a The book presents the necessary mathematical basis to obtain and rigorously use likelihoods for detection problems with Gaussian noise. To facilitate comprehension the text is divided into three broad areas – reproducing kernel Hilbert spaces, Cramér-Hida representations and stochastic calculus – for which a somewhat different approach was used than in their usual stand-alone context. One main applicable result of the book involves arriving at a general solution to the canonical detection problem for active sonar in a reverberation-limited environment. Nonetheless, the general problems dealt with in the text also provide a useful framework for discussing other current research areas, such as wavelet decompositions, neural networks, and higher order spectral analysis. The structure of the book, with the exposition presenting as many details as necessary, was chosen to serve both those readers who are chiefly interested in the results and those who want to learn the material from scratch. Hence, the text will be useful for graduate students and researchers alike in the fields of engineering, mathematics and statistics. 
650 0 |a Probabilities. 
650 0 |a Functional analysis. 
650 0 |a Information theory. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Functional Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12066 
650 2 4 |a Information and Communication, Circuits.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13038 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319223162 
776 0 8 |i Printed edition:  |z 9783319223148 
776 0 8 |i Printed edition:  |z 9783319793924 
856 4 0 |u https://doi.org/10.1007/978-3-319-22315-5 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)