Extracting Physics from Gravitational Waves Testing the Strong-field Dynamics of General Relativity and Inferring the Large-scale Structure of the Universe /

Tjonnie Li's thesis covers two applications of Gravitational Wave astronomy: tests of General Relativity in the strong-field regime and cosmological measurements. The first part of the thesis focuses on the so-called TIGER, i.e. Test Infrastructure for General Relativity, an innovative Bayesian...

Full description

Main Author: Li, Tjonnie G. F. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-19273-4
LEADER 04730nam a22005415i 4500
001 978-3-319-19273-4
003 DE-He213
005 20210618080657.0
007 cr nn 008mamaa
008 150703s2015 gw | s |||| 0|eng d
020 |a 9783319192734  |9 978-3-319-19273-4 
024 7 |a 10.1007/978-3-319-19273-4  |2 doi 
050 4 |a QC178 
050 4 |a QC173.5-173.65 
072 7 |a PHR  |2 bicssc 
072 7 |a SCI061000  |2 bisacsh 
072 7 |a PHDV  |2 thema 
072 7 |a PHR  |2 thema 
082 0 4 |a 530.1  |2 23 
100 1 |a Li, Tjonnie G. F.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Extracting Physics from Gravitational Waves  |h [electronic resource] :  |b Testing the Strong-field Dynamics of General Relativity and Inferring the Large-scale Structure of the Universe /  |c by Tjonnie G. F. Li. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XXVI, 235 p. 47 illus., 30 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Part I General Introduction -- Gravitational waves in the linearised theory of General Relativity -- Gravitational waves in the post-Newtonian formalism -- Gravitational waves: detection and sources -- Bayesian Inference -- Computational methods -- Part II Testing the Strong-field Dynamics of General Relativity -- Introduction -- Test Infrastructure for General Relativity (TIGER) -- Results -- Discussion -- Part III Inferring the Large-scale Structure of the Universe -- Introduction -- Cosmography -- Electromagnetic counterpart as redshift measurement -- Concluding remarks -- A Systematic multipole expansion -- Bibliography -- Popular-science summary. 
520 |a Tjonnie Li's thesis covers two applications of Gravitational Wave astronomy: tests of General Relativity in the strong-field regime and cosmological measurements. The first part of the thesis focuses on the so-called TIGER, i.e. Test Infrastructure for General Relativity, an innovative Bayesian framework for performing hypothesis tests of modified gravity using ground-based GW data. After developing the framework, Li simulates a variety of General Relativity deviations and demonstrates the ability of the aforementioned TIGER to measure them. The advantages of the method are nicely shown and compared to other, less generic methods. Given the extraordinary implications that would result from any measured deviation from General Relativity, it is extremely important that a rigorous statistical approach for supporting these results would be in place before the first Gravitational Wave detections begin. In developing TIGER, Tjonnie Li shows a large amount of creativity and originality, and his contribution is an important step in the direction of a possible discovery of a deviation (if any) from General Relativity. In another section, Li's thesis deals with cosmology, describing an exploratory study where the possibility of cosmological parameters measurement through gravitational wave compact binary coalescence signals associated with electromagnetic counterparts is evaluated. In particular, the study explores the capabilities of the future Einstein Telescope observatory. Although of very long term-only applicability, this is again a thorough investigation, nicely put in the context of the current and the future observational cosmology. The author is the winner of the 2013 Stefano Braccini Thesis Prize awarded by the Gravitational Wave International Committee. 
650 0 |a Gravitation. 
650 0 |a Cosmology. 
650 0 |a Physics. 
650 1 4 |a Classical and Quantum Gravitation, Relativity Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P19070 
650 2 4 |a Cosmology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P22049 
650 2 4 |a Numerical and Computational Physics, Simulation.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P19021 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319192741 
776 0 8 |i Printed edition:  |z 9783319192727 
776 0 8 |i Printed edition:  |z 9783319366647 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u https://doi.org/10.1007/978-3-319-19273-4 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)