Ideals, Varieties, and Algorithms An Introduction to Computational Algebraic Geometry and Commutative Algebra /

This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the preface illustrates a variety of ways to proceed with the material once these ch...

Full description

Main Authors: Cox, David A. (Author, http://id.loc.gov/vocabulary/relators/aut), Little, John. (http://id.loc.gov/vocabulary/relators/aut), O'Shea, Donal. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:4th ed. 2015.
Series:Undergraduate Texts in Mathematics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-16721-3
LEADER 05422nam a22005775i 4500
001 978-3-319-16721-3
003 DE-He213
005 20210616081724.0
007 cr nn 008mamaa
008 150430s2015 gw | s |||| 0|eng d
020 |a 9783319167213  |9 978-3-319-16721-3 
024 7 |a 10.1007/978-3-319-16721-3  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Cox, David A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Ideals, Varieties, and Algorithms  |h [electronic resource] :  |b An Introduction to Computational Algebraic Geometry and Commutative Algebra /  |c by David A. Cox, John Little, Donal O'Shea. 
250 |a 4th ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVI, 646 p. 95 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
505 0 |a Preface -- Notation for Sets and Functions -- 1. Geometry, Algebra, and Algorithms -- 2. Groebner Bases -- 3. Elimination Theory -- 4.The Algebra-Geometry Dictionary -- 5. Polynomial and Rational Functions on a Variety -- 6. Robotics and Automatic Geometric Theorem Proving -- 7. Invariant Theory of Finite Groups -- 8. Projective Algebraic Geometry -- 9. The Dimension of a Variety -- 10. Additional Groebner Basis Algorithms -- Appendix A. Some Concepts from Algebra -- Appendix B. Pseudocode -- Appendix C. Computer Algebra Systems -- Appendix D. Independent Projects -- References -- Index. . 
520 |a This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry—the elimination theorem, the extension theorem, the closure theorem, and the Nullstellensatz—this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D). The book may serve as a first or second course in undergraduate abstract algebra and, with some supplementation perhaps, for beginning graduate level courses in algebraic geometry or computational algebra. Prerequisites for the reader include linear algebra and a proof-oriented course. It is assumed that the reader has access to a computer algebra system. Appendix C describes features of Maple™, Mathematica®, and Sage, as well as other systems that are most relevant to the text. Pseudocode is used in the text; Appendix B carefully describes the pseudocode used. From the reviews of previous editions: “…The book gives an introduction to Buchberger’s algorithm with applications to syzygies, Hilbert polynomials, primary decompositions. There is an introduction to classical algebraic geometry with applications to the ideal membership problem, solving polynomial equations, and elimination theory. …The book is well-written. …The reviewer is sure that it will be an excellent guide to introduce further undergraduates in the algorithmic aspect of commutative algebra and algebraic geometry.” —Peter Schenzel, zbMATH, 2007 “I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures, and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry.” —The American Mathematical Monthly. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Mathematical logic. 
650 0 |a Computer software. 
650 1 4 |a Algebraic Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11019 
650 2 4 |a Commutative Rings and Algebras.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11043 
650 2 4 |a Mathematical Logic and Foundations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M24005 
650 2 4 |a Mathematical Software.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14042 
700 1 |a Little, John.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a O'Shea, Donal.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319167206 
776 0 8 |i Printed edition:  |z 9783319167220 
776 0 8 |i Printed edition:  |z 9783319374277 
830 0 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
856 4 0 |u https://doi.org/10.1007/978-3-319-16721-3 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)