Mathematical Methods in Physics Distributions, Hilbert Space Operators, Variational Methods, and Applications in Quantum Physics /

The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas.  The authors stress that learning mathematical physics is not...

Full description

Main Authors: Blanchard, Philippe. (Author, http://id.loc.gov/vocabulary/relators/aut), Brüning, Erwin. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Birkhäuser, 2015.
Edition:2nd ed. 2015.
Series:Progress in Mathematical Physics, 69
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-14045-2
LEADER 05920nam a22005895i 4500
001 978-3-319-14045-2
003 DE-He213
005 20210708134454.0
007 cr nn 008mamaa
008 150407s2015 gw | s |||| 0|eng d
020 |a 9783319140452  |9 978-3-319-14045-2 
024 7 |a 10.1007/978-3-319-14045-2  |2 doi 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Blanchard, Philippe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical Methods in Physics  |h [electronic resource] :  |b Distributions, Hilbert Space Operators, Variational Methods, and Applications in Quantum Physics /  |c by Philippe Blanchard, Erwin Brüning. 
250 |a 2nd ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a XXVII, 598 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematical Physics,  |x 1544-9998 ;  |v 69 
505 0 |a Introduction -- Spaces of Test Functions -- Schwartz Distributions -- Calculus for Distributions -- Distributions as Derivatives of Functions -- Tensor Products -- Convolution Products -- Applications of Convolution -- Holomorphic Functions -- Fourier Transformations -- Distributions as Boundary Values of Analytic Functions -- Other Spaces of Generalized Functions -- Sobolev Spaces -- Hilbert Spaces: A Brief Historical Introduction -- Inner Product Spaces and Hilbert Spaces -- Geometry of Hilbert Spaces -- Separable Hilbert Spaces -- Direct Sums and Tensor Products -- Topological Aspects -- Linear Operators -- Quadratic Forms -- Bounded Linear Operators -- Special Classes of Linear Operators -- Elements of Spectral Theory -- Compact Operators -- Hilbert-Schmidt and Trace Class Operators -- The Spectral Theorem -- Some Applications of the Spectral Representation -- Spectral Analysis in Rigged Hilbert Spaces -- Operator Algebras and Positive Mappings -- Positive Mappings in Quantum Physics -- Introduction -- Direct Methods in the Calculus of Variations -- Differential Calculus on Banach Spaces and Extrema of Functions -- Constrained Minimization Problems (Method of Lagrange Multipliers) -- Boundary and Eigenvalue Problems -- Density Functional Theory of Atoms and Molecules -- Appendices -- Index.  . 
520 |a The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas.  The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories.  All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods.   The text is divided into three main parts. Part I is a brief introduction to distribution theory, in which elements from the theories of ultradistributions and hyperfunctions are considered in addition to some deeper results for Schwartz distributions, thus providing a comprehensive introduction to the theory of generalized functions. Part II contains fundamental facts about Hilbert spaces and their geometry. The theory of linear operators, both bounded and unbounded, is developed, focusing on results needed for the theory of Schrödinger operators. Part III treats the direct methods of the calculus of variations and their applications to boundary- and eigenvalue-problems for linear and nonlinear partial differential operators. The appendices contain proofs of more general and deeper results, including completions, basic facts about metrizable Hausdorff locally convex topological vector spaces, Baire's fundamental results and their main consequences, and bilinear functionals.    Mathematical Methods in Physics is aimed at a broad community of graduate students in mathematics, mathematical physics, quantum information theory, physics and engineering, as well as researchers in these disciplines. Expanded content and relevant updates will make this new edition a valuable resource for those working in these disciplines. 
650 0 |a Mathematical physics. 
650 0 |a Physics. 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 0 |a Mathematical optimization. 
650 1 4 |a Mathematical Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M35000 
650 2 4 |a Mathematical Methods in Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P19013 
650 2 4 |a Functional Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12066 
650 2 4 |a Operator Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12139 
650 2 4 |a Optimization.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M26008 
700 1 |a Brüning, Erwin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319140445 
776 0 8 |i Printed edition:  |z 9783319140469 
776 0 8 |i Printed edition:  |z 9783319374307 
830 0 |a Progress in Mathematical Physics,  |x 1544-9998 ;  |v 69 
856 4 0 |u https://doi.org/10.1007/978-3-319-14045-2 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)