Approaching the Kannan-Lovász-Simonovits and Variance Conjectures

Focusing on two central conjectures from the field of Asymptotic Geometric Analysis, the Kannan-Lovász-Simonovits spectral gap conjecture and the variance conjecture, these Lecture Notes present the theory in an accessible way, so that interested readers, even those who are not experts in the field,...

Full description

Main Authors: Alonso-Gutiérrez, David. (Author, http://id.loc.gov/vocabulary/relators/aut), Bastero, Jesús. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:Lecture Notes in Mathematics, 2131
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-13263-1
LEADER 03429nam a22005415i 4500
001 978-3-319-13263-1
003 DE-He213
005 20210702081605.0
007 cr nn 008mamaa
008 150107s2015 gw | s |||| 0|eng d
020 |a 9783319132631  |9 978-3-319-13263-1 
024 7 |a 10.1007/978-3-319-13263-1  |2 doi 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.7  |2 23 
100 1 |a Alonso-Gutiérrez, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Approaching the Kannan-Lovász-Simonovits and Variance Conjectures  |h [electronic resource] /  |c by David Alonso-Gutiérrez, Jesús Bastero. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a X, 148 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2131 
505 0 |a The Conjectures -- Main Examples -- Relating the Conjectures -- Appendix -- Index. 
520 |a Focusing on two central conjectures from the field of Asymptotic Geometric Analysis, the Kannan-Lovász-Simonovits spectral gap conjecture and the variance conjecture, these Lecture Notes present the theory in an accessible way, so that interested readers, even those who are not experts in the field, will be able to appreciate the topics treated. Employing a style suitable for professionals with little background in analysis, geometry or probability, the work goes directly to the connection between isoperimetric-type inequalities and functional inequalities, allowing readers to quickly access the core of these conjectures. In addition, four recent and important results concerning this theory are presented. The first two are theorems attributed to Eldan-Klartag and Ball-Nguyen, which relate the variance and the KLS conjectures, respectively, to the hyperplane conjecture. The remaining two present in detail the main ideas needed to prove the best known estimate for the thin-shell width given by Guédon-Milman, and an approach to Eldan’s work on the connection between the thin-shell width and the KLS conjecture. 
650 0 |a Functional analysis. 
650 0 |a Convex geometry . 
650 0 |a Discrete geometry. 
650 0 |a Probabilities. 
650 1 4 |a Functional Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12066 
650 2 4 |a Convex and Discrete Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M21014 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
700 1 |a Bastero, Jesús.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319132648 
776 0 8 |i Printed edition:  |z 9783319132624 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2131 
856 4 0 |u https://doi.org/10.1007/978-3-319-13263-1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)