Data Structures and Algorithms with Python

This clearly structured and easy to read textbook explains the concepts and techniques required to write programs that can handle large amounts of data efficiently. Project-oriented and classroom-tested, the book presents a number of important algorithms supported by motivating examples that bring m...

Full description

Main Authors: Lee, Kent D. (Author, http://id.loc.gov/vocabulary/relators/aut), Hubbard, Steve. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:Undergraduate Topics in Computer Science,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-13072-9
LEADER 04654nam a22005415i 4500
001 978-3-319-13072-9
003 DE-He213
005 20210623010822.0
007 cr nn 008mamaa
008 150112s2015 gw | s |||| 0|eng d
020 |a 9783319130729  |9 978-3-319-13072-9 
024 7 |a 10.1007/978-3-319-13072-9  |2 doi 
050 4 |a QA76.9.D35 
072 7 |a UMB  |2 bicssc 
072 7 |a COM062000  |2 bisacsh 
072 7 |a UMB  |2 thema 
082 0 4 |a 005.73  |2 23 
100 1 |a Lee, Kent D.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data Structures and Algorithms with Python  |h [electronic resource] /  |c by Kent D. Lee, Steve Hubbard. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 363 p. 147 illus., 139 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Topics in Computer Science,  |x 1863-7310 
505 0 |a 1: Python Programming 101 -- 2: Computational Complexity -- 3: Recursion -- Sequences -- 4: Sets and Maps -- 5: Trees -- 6: Graphs -- 7: Membership Structures -- 8: Heaps -- 9: Balanced Binary Search Trees -- 10: B-Trees -- 11: Heuristic Search -- Appendix A: Integer Operators -- Appendix B: Float Operators -- Appendix C: String Operators and Methods -- Appendix D: List Operators and Methods -- Appendix E: Dictionary Operators and Methods -- Appendix F: Turtle Methods -- Appendix G: TurtleScreen Methods -- Appendix H: Complete Programs. 
520 |a This clearly structured and easy to read textbook explains the concepts and techniques required to write programs that can handle large amounts of data efficiently. Project-oriented and classroom-tested, the book presents a number of important algorithms supported by motivating examples that bring meaning to the problems faced by computer programmers. The idea of computational complexity is also introduced, demonstrating what can and cannot be computed efficiently so that the programmer can make informed judgements about the algorithms they use. The text assumes some basic experience in computer programming and familiarity in an object-oriented language, but not necessarily with Python. Topics and features: Includes both introductory and advanced data structures and algorithms topics, with suggested chapter sequences for those respective courses provided in the preface Provides learning goals, review questions and programming exercises in each chapter, as well as numerous illustrative examples Offers downloadable programs and supplementary files at an associated website, with instructor materials available from the author Presents a primer on Python for those coming from a different language background Reviews the use of hashing in sets and maps, along with an examination of binary search trees and tree traversals, and material on depth first search of graphs Discusses topics suitable for an advanced course, such as membership structures, heaps, balanced binary search trees, B-trees and heuristic search Students of computer science will find this clear and concise textbook to be invaluable for undergraduate courses on data structures and algorithms, at both introductory and advanced levels. The book is also suitable as a refresher guide for computer programmers starting new jobs working with Python. 
650 0 |a Data structures (Computer science). 
650 0 |a Python (Computer program language). 
650 0 |a Algorithms. 
650 0 |a Computer programming. 
650 1 4 |a Data Structures.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I15017 
650 2 4 |a Python.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I29080 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I16021 
650 2 4 |a Programming Techniques.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I14010 
700 1 |a Hubbard, Steve.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319130736 
776 0 8 |i Printed edition:  |z 9783319130712 
830 0 |a Undergraduate Topics in Computer Science,  |x 1863-7310 
856 4 0 |u https://doi.org/10.1007/978-3-319-13072-9 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)