An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in L∞

The purpose of this book is to give a quick and elementary, yet rigorous, presentation of the rudiments of the so-called theory of Viscosity Solutions which applies to fully nonlinear 1st and 2nd order Partial Differential Equations (PDE). For such equations, particularly for 2nd order ones, solutio...

Full description

Main Author: Katzourakis, Nikos. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:SpringerBriefs in Mathematics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-12829-0
LEADER 02728nam a22004695i 4500
001 978-3-319-12829-0
003 DE-He213
005 20210617190357.0
007 cr nn 008mamaa
008 141126s2015 gw | s |||| 0|eng d
020 |a 9783319128290  |9 978-3-319-12829-0 
024 7 |a 10.1007/978-3-319-12829-0  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Katzourakis, Nikos.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in L∞  |h [electronic resource] /  |c by Nikos Katzourakis. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XII, 123 p. 25 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
520 |a The purpose of this book is to give a quick and elementary, yet rigorous, presentation of the rudiments of the so-called theory of Viscosity Solutions which applies to fully nonlinear 1st and 2nd order Partial Differential Equations (PDE). For such equations, particularly for 2nd order ones, solutions generally are non-smooth and standard approaches in order to define a "weak solution" do not apply: classical, strong almost everywhere, weak, measure-valued and distributional solutions either do not exist or may not even be defined. The main reason for the latter failure is that, the standard idea of using "integration-by-parts" in order to pass derivatives to smooth test functions by duality, is not available for non-divergence structure PDE. 
650 0 |a Partial differential equations. 
650 0 |a Calculus of variations. 
650 1 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M26016 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319128306 
776 0 8 |i Printed edition:  |z 9783319128283 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u https://doi.org/10.1007/978-3-319-12829-0 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)