Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces

This is a monograph that details the use of Siegel’s method and the classical results of homotopy groups of spheres and Lie groups to determine some Gottlieb groups of projective spaces or to give the lower bounds of their orders. Making use of the properties of Whitehead products, the authors also...

Full description

Main Authors: Golasiński, Marek. (Author, http://id.loc.gov/vocabulary/relators/aut), Mukai, Juno. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-11517-7
LEADER 02793nam a22005535i 4500
001 978-3-319-11517-7
003 DE-He213
005 20210619194232.0
007 cr nn 008mamaa
008 141107s2014 gw | s |||| 0|eng d
020 |a 9783319115177  |9 978-3-319-11517-7 
024 7 |a 10.1007/978-3-319-11517-7  |2 doi 
050 4 |a QA639.5-640.7 
050 4 |a QA640.7-640.77 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012020  |2 bisacsh 
072 7 |a PBMW  |2 thema 
072 7 |a PBD  |2 thema 
082 0 4 |a 516.1  |2 23 
100 1 |a Golasiński, Marek.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces  |h [electronic resource] /  |c by Marek Golasiński, Juno Mukai. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVII, 132 p. 7 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Gottlieb groups of Spheres -- Gottlieb and Whitehead Center Groups of Projective Spaces -- Gottlieb and Whitehead Center Groups of Moore Spaces. 
520 |a This is a monograph that details the use of Siegel’s method and the classical results of homotopy groups of spheres and Lie groups to determine some Gottlieb groups of projective spaces or to give the lower bounds of their orders. Making use of the properties of Whitehead products, the authors also determine some Whitehead center groups of projective spaces that are relevant and new within this monograph. 
650 0 |a Convex geometry . 
650 0 |a Discrete geometry. 
650 0 |a Differential geometry. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 1 4 |a Convex and Discrete Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M21014 
650 2 4 |a Differential Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M21022 
650 2 4 |a Category Theory, Homological Algebra.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11035 
700 1 |a Mukai, Juno.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319115184 
776 0 8 |i Printed edition:  |z 9783319115160 
776 0 8 |i Printed edition:  |z 9783319384542 
856 4 0 |u https://doi.org/10.1007/978-3-319-11517-7 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)