Formal Algorithmic Elimination for PDEs

Investigating the correspondence between systems of partial differential equations and their analytic solutions using a formal approach, this monograph presents algorithms to determine the set of analytic solutions of such a system and conversely to find differential equations whose set of solutions...

Full description

Main Author: Robertz, Daniel. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:Lecture Notes in Mathematics, 2121
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-11445-3
LEADER 03518nam a22005775i 4500
001 978-3-319-11445-3
003 DE-He213
005 20210702083019.0
007 cr nn 008mamaa
008 141013s2014 gw | s |||| 0|eng d
020 |a 9783319114453  |9 978-3-319-11445-3 
024 7 |a 10.1007/978-3-319-11445-3  |2 doi 
050 4 |a QA247-247.45 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.3  |2 23 
100 1 |a Robertz, Daniel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Formal Algorithmic Elimination for PDEs  |h [electronic resource] /  |c by Daniel Robertz. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a VIII, 283 p. 6 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2121 
505 0 |a Introduction -- Formal Methods for PDE Systems -- Differential Elimination for Analytic Functions -- Basic Principles and Supplementary Material -- References -- List of Algorithms -- List of Examples -- Index of Notation -- Index. 
520 |a Investigating the correspondence between systems of partial differential equations and their analytic solutions using a formal approach, this monograph presents algorithms to determine the set of analytic solutions of such a system and conversely to find differential equations whose set of solutions coincides with a given parametrized set of analytic functions. After giving a detailed introduction to Janet bases and Thomas decomposition, the problem of finding an implicit description of certain sets of analytic functions in terms of differential equations is addressed. Effective methods of varying generality are developed to solve the differential elimination problems that arise in this context. In particular, it is demonstrated how the symbolic solution of partial differential equations profits from the study of the implicitization problem. For instance, certain families of exact solutions of the Navier-Stokes equations can be computed. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Partial differential equations. 
650 1 4 |a Field Theory and Polynomials.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11051 
650 2 4 |a Commutative Rings and Algebras.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11043 
650 2 4 |a Associative Rings and Algebras.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11027 
650 2 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319114460 
776 0 8 |i Printed edition:  |z 9783319114446 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2121 
856 4 0 |u https://doi.org/10.1007/978-3-319-11445-3 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)