Geometric Invariant Theory for Polarized Curves

We investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotie...

Full description

Main Authors: Bini, Gilberto. (Author, http://id.loc.gov/vocabulary/relators/aut), Felici, Fabio. (http://id.loc.gov/vocabulary/relators/aut), Melo, Margarida. (http://id.loc.gov/vocabulary/relators/aut), Viviani, Filippo. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:Lecture Notes in Mathematics, 2122
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-11337-1
LEADER 03731nam a22005055i 4500
001 978-3-319-11337-1
003 DE-He213
005 20210702075936.0
007 cr nn 008mamaa
008 141107s2014 gw | s |||| 0|eng d
020 |a 9783319113371  |9 978-3-319-11337-1 
024 7 |a 10.1007/978-3-319-11337-1  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Bini, Gilberto.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Geometric Invariant Theory for Polarized Curves  |h [electronic resource] /  |c by Gilberto Bini, Fabio Felici, Margarida Melo, Filippo Viviani. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 211 p. 17 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2122 
505 0 |a Introduction -- Singular Curves -- Combinatorial Results -- Preliminaries on GIT -- Potential Pseudo-stability Theorem -- Stabilizer Subgroups -- Behavior at the Extremes of the Basic Inequality -- A Criterion of Stability for Tails -- Elliptic Tails and Tacnodes with a Line -- A Strati_cation of the Semistable Locus -- Semistable, Polystable and Stable Points (part I) -- Stability of Elliptic Tails -- Semistable, Polystable and Stable Points (part II) -- Geometric Properties of the GIT Quotient -- Extra Components of the GIT Quotient -- Compacti_cations of the Universal Jacobian -- Appendix: Positivity Properties of Balanced Line Bundles.  . 
520 |a We investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotients change are given by d=a(2g-2) where a=2, 3.5, 4. We show that, for a>4, L. Caporaso's results hold true for both Hilbert and Chow semistability. If 3.5<a<4, the Hilbert semistable locus coincides with the Chow semistable locus and it maps to the moduli stack of weakly-pseudo-stable curves. If 2<a<3.5, the Hilbert and Chow semistable loci coincide and they map to the moduli stack of pseudo-stable curves. We also analyze in detail the critical values a=3.5 and a=4, where the Hilbert semistable locus is strictly smaller than the Chow semistable locus. As an application, we obtain three compactications of the universal Jacobian over the moduli space of stable curves, weakly-pseudo-stable curves and pseudo-stable curves, respectively. 
650 0 |a Algebraic geometry. 
650 1 4 |a Algebraic Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11019 
700 1 |a Felici, Fabio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Melo, Margarida.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Viviani, Filippo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319113388 
776 0 8 |i Printed edition:  |z 9783319113364 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2122 
856 4 0 |u https://doi.org/10.1007/978-3-319-11337-1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)