Bifurcation without Parameters

Targeted at mathematicians having at least a basic familiarity with classical bifurcation theory, this monograph provides a systematic classification and analysis of bifurcations without parameters in dynamical systems. Although the methods and concepts are briefly introduced, a prior knowledge of c...

Full description

Main Author: Liebscher, Stefan. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:Lecture Notes in Mathematics, 2117
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-10777-6
LEADER 03343nam a22005295i 4500
001 978-3-319-10777-6
003 DE-He213
005 20210702075026.0
007 cr nn 008mamaa
008 141108s2015 gw | s |||| 0|eng d
020 |a 9783319107776  |9 978-3-319-10777-6 
024 7 |a 10.1007/978-3-319-10777-6  |2 doi 
050 4 |a QA372 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.352  |2 23 
100 1 |a Liebscher, Stefan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Bifurcation without Parameters  |h [electronic resource] /  |c by Stefan Liebscher. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XII, 142 p. 34 illus., 29 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2117 
505 0 |a Introduction -- Methods & Concepts -- Cosymmetries -- Codimension One -- Transcritical Bifurcation -- Poincar´e-Andronov-Hopf Bifurcation -- Application: Decoupling in Networks -- Application: Oscillatory Profiles -- Codimension Two -- egenerate Transcritical Bifurcation -- egenerate Andronov-Hopf Bifurcation -- Bogdanov-Takens Bifurcation -- Zero-Hopf Bifurcation -- Double-Hopf Bifurcation -- Application: Cosmological Models -- Application: Planar Fluid Flow -- Beyond Codimension Two -- Codimension-One Manifolds of Equilibria -- Summary & Outlook. 
520 |a Targeted at mathematicians having at least a basic familiarity with classical bifurcation theory, this monograph provides a systematic classification and analysis of bifurcations without parameters in dynamical systems. Although the methods and concepts are briefly introduced, a prior knowledge of center-manifold reductions and normal-form calculations will help the reader to appreciate the presentation. Bifurcations without parameters occur along manifolds of equilibria, at points where normal hyperbolicity of the manifold is violated. The general theory, illustrated by many applications, aims at a geometric understanding of the local dynamics near the bifurcation points. 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 1 4 |a Ordinary Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12147 
650 2 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
650 2 4 |a Dynamical Systems and Ergodic Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319107783 
776 0 8 |i Printed edition:  |z 9783319107769 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2117 
856 4 0 |u https://doi.org/10.1007/978-3-319-10777-6 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)